Home
Class 12
MATHS
If A=[(2,-2),(4,2),(-5,1)],B=[(8,0),(4,-...

If `A=[(2,-2),(4,2),(-5,1)],B=[(8,0),(4,-2),(3,6)]`, find matrix 'C', such that `2A+3C=5B`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( C \) such that \( 2A + 3C = 5B \), we will follow these steps: ### Step 1: Write down the matrices \( A \) and \( B \) Given: \[ A = \begin{pmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{pmatrix} \] ### Step 2: Calculate \( 2A \) To find \( 2A \), we multiply each element of matrix \( A \) by 2: \[ 2A = 2 \times \begin{pmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -4 \\ 8 & 4 \\ -10 & 2 \end{pmatrix} \] ### Step 3: Calculate \( 5B \) Next, we calculate \( 5B \) by multiplying each element of matrix \( B \) by 5: \[ 5B = 5 \times \begin{pmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 40 & 0 \\ 20 & -10 \\ 15 & 30 \end{pmatrix} \] ### Step 4: Set up the equation \( 3C = 5B - 2A \) Now we substitute \( 2A \) and \( 5B \) into the equation: \[ 3C = 5B - 2A = \begin{pmatrix} 40 & 0 \\ 20 & -10 \\ 15 & 30 \end{pmatrix} - \begin{pmatrix} 4 & -4 \\ 8 & 4 \\ -10 & 2 \end{pmatrix} \] ### Step 5: Perform the subtraction Now we perform the subtraction element-wise: \[ 3C = \begin{pmatrix} 40 - 4 & 0 - (-4) \\ 20 - 8 & -10 - 4 \\ 15 - (-10) & 30 - 2 \end{pmatrix} = \begin{pmatrix} 36 & 4 \\ 12 & -14 \\ 25 & 28 \end{pmatrix} \] ### Step 6: Solve for \( C \) To find \( C \), we divide each element of \( 3C \) by 3: \[ C = \frac{1}{3} \begin{pmatrix} 36 & 4 \\ 12 & -14 \\ 25 & 28 \end{pmatrix} = \begin{pmatrix} 12 & \frac{4}{3} \\ 4 & -\frac{14}{3} \\ \frac{25}{3} & \frac{28}{3} \end{pmatrix} \] ### Final Answer Thus, the matrix \( C \) is: \[ C = \begin{pmatrix} 12 & \frac{4}{3} \\ 4 & -\frac{14}{3} \\ \frac{25}{3} & \frac{28}{3} \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[(2,2),(-3,1),(4,0)],B=[(6,2),(1,3),(0,4)], find the matrix C such that A+B+C is a zero

If A=[(1,4),(3,2),(2,5)], B=[(-1,-2),(0,5),(3,1)] , find the matrix D such that A+B-D=0 .

Knowledge Check

  • if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

    A
    `[(1,-8),(-3,-10),(8,-11):}].`
    B
    `[(0,-8),(-3,-10),(8,-11):}].`
    C
    `[(0,-8),(-3,-10),(7,-11):}].`
    D
    `[(5,-8),(-3,-10),(8,-11):}].`
  • If A={:[(1,-4),(3,2)]:}andB={:[(6,-1),(3,2)]:} , then find the matrix C such that C=AB+B^(2) .

    A
    `{:[(37,25),(16,9)]:}`
    B
    `{:[(27,-17),(48,2)]:}`
    C
    `{:[(4,5),(17,16)]:}`
    D
    `{:[(3,-15),(6,18)]:}`
  • Given A = [(1,2,-3),(5,0,2),(1,-1,1)] and B - [(3,-1,2),(4,2,5),(2,0,3)] . The matrix C such that A + 2C = B is

    A
    `[(1,(3)/(2),1),(-(1)/(2),(7)/(2),(3)/(2)),((1)/(2),(8)/(2),8)]`
    B
    `[((5)/(2),(3)/(2),1),(-(1)/(2),(7)/(2),(9)/(2)),((11)/(2),(9)/(2),8)]`
    C
    `[(1,2,4),((3)/(2),(11)/(2),(13)/(14)),(4,(9)/(2),(7)/(2))]`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If A=[(2, 2), (-3, 1), (4, 0)], B=[(6, 2), (1, 3), (0, 4)], find the matrix C such that A + B + C is zero matrix.

    A={:[(1,2),(3,4),(5,6)]:},B={:[(0,1),(-1,2),(-2,1)]:} , then find matrix X such that 2A +3X=5B.

    Given A=[(1,2,-3),(5,0,2),(1,-1,1)] and b=[(3,-1,2),(4,2,5),(2,0,3)] , find the matrix C such that A+C=B .

    if A[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find A matrix C such that 2A-B+3c is a unit matrix.

    "If A"=[{:(,8,0),(,4,-2),(,3,6):}] and B=[{:(,2,-2),(,4,2),(,-5,1):}] then find the matrix X, such that 2A+3X=5B