Home
Class 12
MATHS
Using matrix method, solve the system of...

Using matrix method, solve the system of linear equations
`x-2y=10,2x-y-z=8and-2y+z=7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( x - 2y + 0z = 10 \) 2. \( 2x - y - z = 8 \) 3. \( 0x - 2y + z = 7 \) ### Step 1: Write the equations in matrix form We can express the system of equations in the form \( Ax = B \), where: \[ A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \] ### Step 2: Calculate the determinant of matrix A To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \). \[ |A| = 1 \cdot \left| \begin{bmatrix} -1 & -1 \\ -2 & 1 \end{bmatrix} \right| - (-2) \cdot \left| \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \right| + 0 \cdot \left| \begin{bmatrix} 2 & -1 \\ 0 & -2 \end{bmatrix} \right| \] Calculating the minors: 1. \( \left| \begin{bmatrix} -1 & -1 \\ -2 & 1 \end{bmatrix} \right| = (-1)(1) - (-1)(-2) = -1 - 2 = -3 \) 2. \( \left| \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \right| = (2)(1) - (-1)(0) = 2 - 0 = 2 \) Now substituting back: \[ |A| = 1 \cdot (-3) + 2 \cdot 2 + 0 = -3 + 4 = 1 \] ### Step 3: Calculate the adjoint of matrix A The adjoint of \( A \) is the transpose of the cofactor matrix. We will calculate the cofactors: 1. \( C_{11} = -3 \) (as calculated above) 2. \( C_{12} = 2 \) (from the second minor calculation) 3. \( C_{13} = -4 \) (similar calculation) 4. \( C_{21} = 2 \) 5. \( C_{22} = 1 \) 6. \( C_{23} = 2 \) 7. \( C_{31} = 2 \) 8. \( C_{32} = 1 \) 9. \( C_{33} = -1 \) Thus, the cofactor matrix is: \[ C = \begin{bmatrix} -3 & 2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & -1 \end{bmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{bmatrix} -3 & 2 & 2 \\ 2 & 1 & 1 \\ -4 & 2 & -1 \end{bmatrix} \] ### Step 4: Calculate the inverse of matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) = 1 \cdot \begin{bmatrix} -3 & 2 & 2 \\ 2 & 1 & 1 \\ -4 & 2 & -1 \end{bmatrix} \] ### Step 5: Solve for x Now, we can find \( x \) using: \[ x = A^{-1}B \] Calculating \( A^{-1}B \): \[ x = \begin{bmatrix} -3 & 2 & 2 \\ 2 & 1 & 1 \\ -4 & 2 & -1 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \] Calculating each component: 1. First row: \( -3(10) + 2(8) + 2(7) = -30 + 16 + 14 = 0 \) 2. Second row: \( 2(10) + 1(8) + 1(7) = 20 + 8 + 7 = 35 \) 3. Third row: \( -4(10) + 2(8) - 1(7) = -40 + 16 - 7 = -31 \) Thus, we have: \[ x = \begin{bmatrix} 0 \\ 35 \\ -31 \end{bmatrix} \] ### Final Result The solution to the system of equations is: \[ x = 0, \quad y = 35, \quad z = -31 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=6 and 2x-y+z=2

Using matrix method,solve the following system of linear equations.3x+4y+2z=8,2y-3z=3 and x-2y+6z=-2

Use matrix method, solve the system of linear equations : x + y = 5 , y + z = 3 , x + z = 4 .

Using matrices,solve the following system of linear equations: 3x-2y+3z=8;2x+y-z=1;4x-3y+2z=4

Using matrices,solve the following system of linear equations: x-y+2z=7;3x+4y-5z=-5;2x-y+3z=12

Using matrices,solve the following system of linear equations: 2x-y+z=3,-x+2y-z=-4,x-y+2z=1

Solve the given system of linear equations, x+2y+z=9, x+3y- 2z=-12, -2x+3y+2z=7

Using matrices,solve the following system of equations: x+y+z=2,2x-y=3,2y+z=0

Use matrix to solve the following system of equations. x+y+z=6 x-y+z=2 2x+y-z=1

Using matrices solve the following system of linear equations: {(2x+3y+10z=4),(4x-6y+5z=1),(6x+9y-20z=2):}.

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-SIX MARK QUESTIONS
  1. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  2. Using elementary tansformations, find the inverse of the matrix A=[(...

    Text Solution

    |

  3. Using matrix method, solve the system of linear equations x-2y=10,2x...

    Text Solution

    |

  4. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  5. Find the matrix x for which [(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4...

    Text Solution

    |

  6. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  7. If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0, then show that either ...

    Text Solution

    |

  8. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  9. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  10. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  11. Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+...

    Text Solution

    |

  12. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  13. Prove that (x-2)(x-1) is factor of |(1,1,x),(beta+1,beta+1,beta+x),(3,...

    Text Solution

    |

  14. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  15. Determination the product [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] [{:(,1,...

    Text Solution

    |

  16. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  17. Solve given system of equations by matrix method: (2)/(a)+(3)/(b)+(4...

    Text Solution

    |

  18. To raise money for an orphanage, students of three schools A, B and C ...

    Text Solution

    |

  19. Two cricket teams honored their players for three values, excellent ba...

    Text Solution

    |

  20. If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the sys...

    Text Solution

    |