Home
Class 12
MATHS
Find the matrix x for which [(3,2),(7,5)...

Find the matrix `x` for which `[(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the matrix \( X \) such that \[ \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} X \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix}, \] we can follow these steps: ### Step 1: Define the matrices Let: - \( A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix} \) - \( B = \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix} \) - \( P = \begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \) ### Step 2: Rearranging the equation We need to isolate \( X \). We can rearrange the equation as follows: \[ AXB = P \implies X = A^{-1}PB^{-1} \] ### Step 3: Find the inverse of matrix \( A \) To find \( A^{-1} \), we first compute the determinant of \( A \): \[ \text{det}(A) = (3)(5) - (2)(7) = 15 - 14 = 1 \] Since the determinant is 1, we can find the inverse using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \] ### Step 4: Find the inverse of matrix \( B \) Now, we compute the determinant of \( B \): \[ \text{det}(B) = (-1)(1) - (1)(-2) = -1 + 2 = 1 \] Thus, the inverse of \( B \) is: \[ B^{-1} = \frac{1}{\text{det}(B)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \] ### Step 5: Compute \( X \) Now we can compute \( X \): \[ X = A^{-1}PB^{-1} \] First, calculate \( PB^{-1} \): \[ PB^{-1} = \begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 + (-1) \cdot 2 & 2 \cdot 1 + (-1) \cdot (-1) \\ 0 \cdot 1 + 4 \cdot 2 & 0 \cdot 1 + 4 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 8 & -4 \end{pmatrix} \] Next, compute \( A^{-1} \) times \( PB^{-1} \): \[ X = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 8 & -4 \end{pmatrix} = \begin{pmatrix} 5 \cdot 0 + (-2) \cdot 8 & 5 \cdot 3 + (-2) \cdot (-4) \\ -7 \cdot 0 + 3 \cdot 8 & -7 \cdot 3 + 3 \cdot (-4) \end{pmatrix} = \begin{pmatrix} -16 & 27 \\ 24 & -21 \end{pmatrix} \] ### Final Result Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} -16 & 27 \\ 24 & -21 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Find the matrix X so that X[(1,2),(5,3)]=[(5,10),(2,0)]

Find a matrix X such that X.[(3,2),(1,-1)]=[(4,1),(2,3)] .

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

Solve the matrix equation [(2,1),(5,0)]-3X=[(-7,4),(2,6)]

Find the values of x for which matrix [(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)] is singular.

Find the value of x for which the matrix product [(2, 0, 7),( 0, 1, 0),( 1,-2, 1)][(-x, 14 x,7x),(0, 1, 0),(x,-4x,-2x)] equal to an identity matrix.

Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)] (ii) A[(1, 2, 3 ),(4, 5 ,6)]=[(-7,-8,-9 ),(2, 4 ,6)]

The value of x for which the metrix product {:[(2,0,7),(0,1,0),(1,-2,1)][(-x,14x,7x),(0,1,0),(x,-4x,-2x)]:} equal an identity matrix, is

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-SIX MARK QUESTIONS
  1. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  2. Using elementary tansformations, find the inverse of the matrix A=[(...

    Text Solution

    |

  3. Using matrix method, solve the system of linear equations x-2y=10,2x...

    Text Solution

    |

  4. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  5. Find the matrix x for which [(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4...

    Text Solution

    |

  6. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  7. If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0, then show that either ...

    Text Solution

    |

  8. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  9. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  10. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  11. Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+...

    Text Solution

    |

  12. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  13. Prove that (x-2)(x-1) is factor of |(1,1,x),(beta+1,beta+1,beta+x),(3,...

    Text Solution

    |

  14. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  15. Determination the product [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] [{:(,1,...

    Text Solution

    |

  16. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  17. Solve given system of equations by matrix method: (2)/(a)+(3)/(b)+(4...

    Text Solution

    |

  18. To raise money for an orphanage, students of three schools A, B and C ...

    Text Solution

    |

  19. Two cricket teams honored their players for three values, excellent ba...

    Text Solution

    |

  20. If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the sys...

    Text Solution

    |