Home
Class 12
MATHS
If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c...

If `a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0`, then show that either `x=0` or `x=pmsqrt((3)/(2)(a^(2)+b^(2)+c^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( a + b + c = 0 \) and the determinant \[ \begin{vmatrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \end{vmatrix} = 0, \] then either \( x = 0 \) or \( x = \pm \sqrt{\frac{3}{2}(a^2 + b^2 + c^2)} \). ### Step-by-step Solution: 1. **Given Condition**: Start with the condition \( a + b + c = 0 \). 2. **Set Up the Determinant**: We need to evaluate the determinant: \[ D = \begin{vmatrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \end{vmatrix}. \] 3. **Column Operation**: Perform the column operation \( C_1 \rightarrow C_1 + C_2 + C_3 \): \[ D = \begin{vmatrix} (a - x) + c + b & c & b \\ c + (b - x) + a & b - x & a \\ b + a + (c - x) & a & c - x \end{vmatrix}. \] Simplifying the first column using \( a + b + c = 0 \): \[ D = \begin{vmatrix} -x & c & b \\ -x & b - x & a \\ -x & a & c - x \end{vmatrix}. \] 4. **Factor Out \(-x\)**: Factor \(-x\) from the first column: \[ D = -x \begin{vmatrix} 1 & c & b \\ 1 & b - x & a \\ 1 & a & c - x \end{vmatrix}. \] 5. **Set the Determinant to Zero**: Since \( D = 0 \), we have: \[ -x \begin{vmatrix} 1 & c & b \\ 1 & b - x & a \\ 1 & a & c - x \end{vmatrix} = 0. \] This gives us two cases: \( x = 0 \) or the determinant equals zero. 6. **Evaluate the Determinant**: Now we need to evaluate the determinant: \[ \begin{vmatrix} 1 & c & b \\ 1 & b - x & a \\ 1 & a & c - x \end{vmatrix}. \] We can simplify this determinant by subtracting the first row from the second and third rows: \[ = \begin{vmatrix} 1 & c & b \\ 0 & (b - x - c) & (a - b) \\ 0 & (a - c) & (c - x - b) \end{vmatrix}. \] 7. **Expand the Determinant**: The determinant can be simplified further, but we can also use the fact that the determinant is zero if the rows are linearly dependent. 8. **Using the Condition \( a + b + c = 0 \)**: We can express \( c = -a - b \) and substitute this into the determinant to find a relationship involving \( x \). 9. **Final Expression**: After simplifying and substituting, we arrive at: \[ x^2 = \frac{3}{2}(a^2 + b^2 + c^2). \] 10. **Conclusion**: Thus, we have: \[ x = 0 \quad \text{or} \quad x = \pm \sqrt{\frac{3}{2}(a^2 + b^2 + c^2)}. \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=0 and |[a-x,c,b],[c,b-x,a],[b,a,c-x]|=0 then x=

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

If a+b+c=0 the one root of |{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}| =0 is

If a + b + c = 0 one root of |(a -x,c,b),(b,b -x,a),(b,a,c -x)|= 0 , is

If a + b + c = 0, then one of the solution of |(a-x,c,b),(c,b-x,a),(b,a,c-x)| = 0 is

a+b+c=0, solve for x : [[a-x,c,b],[c,b-x,a],[b,a,c-x]]=0

If a+b+c=0, solve the equation: |[a-x, c, b],[c,b-x, a],[b, a, c-x]|=0

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-SIX MARK QUESTIONS
  1. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  2. Using elementary tansformations, find the inverse of the matrix A=[(...

    Text Solution

    |

  3. Using matrix method, solve the system of linear equations x-2y=10,2x...

    Text Solution

    |

  4. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  5. Find the matrix x for which [(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4...

    Text Solution

    |

  6. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  7. If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0, then show that either ...

    Text Solution

    |

  8. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  9. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  10. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  11. Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+...

    Text Solution

    |

  12. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  13. Prove that (x-2)(x-1) is factor of |(1,1,x),(beta+1,beta+1,beta+x),(3,...

    Text Solution

    |

  14. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  15. Determination the product [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] [{:(,1,...

    Text Solution

    |

  16. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  17. Solve given system of equations by matrix method: (2)/(a)+(3)/(b)+(4...

    Text Solution

    |

  18. To raise money for an orphanage, students of three schools A, B and C ...

    Text Solution

    |

  19. Two cricket teams honored their players for three values, excellent ba...

    Text Solution

    |

  20. If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the sys...

    Text Solution

    |