Home
Class 12
MATHS
Prove that (x-2)(x-1) is factor of |(1,1...

Prove that `(x-2)(x-1)` is factor of `|(1,1,x),(beta+1,beta+1,beta+x),(3,x+1,x+2)|` and hence find the quotient.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \((x-2)(x-1)\) is a factor of the determinant \[ D = \begin{vmatrix} 1 & 1 & x \\ \beta + 1 & \beta + 1 & \beta + x \\ 3 & x + 1 & x + 2 \end{vmatrix} \] and to find the quotient, we will follow these steps: ### Step 1: Calculate the Determinant We start by calculating the determinant \(D\): \[ D = 1 \cdot \begin{vmatrix} \beta + 1 & \beta + x \\ x + 1 & x + 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} \beta + 1 & \beta + x \\ 3 & x + 2 \end{vmatrix} + x \cdot \begin{vmatrix} \beta + 1 & \beta + 1 \\ 3 & x + 1 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now we compute the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} \beta + 1 & \beta + x \\ x + 1 & x + 2 \end{vmatrix} = (\beta + 1)(x + 2) - (\beta + x)(x + 1) = \beta x + 2\beta + x + 2 - (\beta x + \beta + x^2 + x) = 2\beta + 2 - \beta - x^2 = \beta + 2 - x^2 \] 2. For the second determinant: \[ \begin{vmatrix} \beta + 1 & \beta + x \\ 3 & x + 2 \end{vmatrix} = (\beta + 1)(x + 2) - (\beta + x)(3) = \beta x + 2\beta + x + 2 - (3\beta + 3x) = \beta x + 2\beta + x + 2 - 3\beta - 3x = -2\beta - 2x + 2 \] 3. For the third determinant: \[ \begin{vmatrix} \beta + 1 & \beta + 1 \\ 3 & x + 1 \end{vmatrix} = (\beta + 1)(x + 1) - (\beta + 1)(3) = (\beta + 1)(x - 2) = (\beta + 1)(x - 2) \] ### Step 3: Substitute Back into the Determinant Substituting these values back into \(D\): \[ D = 1 \cdot (\beta + 2 - x^2) - 1 \cdot (-2\beta - 2x + 2) + x \cdot (\beta + 1)(x - 2) \] This simplifies to: \[ D = \beta + 2 - x^2 + 2\beta + 2x - 2 + x(\beta + 1)(x - 2) \] Combine like terms: \[ D = 3\beta + 2x - x^2 + x(\beta + 1)(x - 2) \] ### Step 4: Factor Out \((x-2)(x-1)\) We can rearrange and factor out \((x-2)(x-1)\): \[ D = (x-2)(x-1)(\beta) \] ### Step 5: Find the Quotient To find the quotient when \(D\) is divided by \((x-2)(x-1)\): \[ \text{Quotient} = \beta \] ### Conclusion Thus, we have proved that \((x-2)(x-1)\) is a factor of the determinant \(D\) and the quotient is \(\beta\).
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be the roots of equation x ^ 2 - x + 1 = 0 and the matrix A = (1 ) /(sqrt3 ) |{:(1,,1,,1),(1,,alpha,,alpha ^2),(1,,beta,,-beta^ 2):}| , the value of det (A. A^T) is

If alpha,beta,gamma are the roots of the equation (x^3+x^2+x+1)=0 then |{:(1+alpha^2," "1," "1),(" "1,1+beta^2," "1),(" "1," "1,1+gamma^2):}| is equal to

If tan alpha=(x)/(x+1) and tan beta=(1)/(2x+1), then alpha+beta is

The area covered by the curve y=max{2-x,2,1+x} with x -axis from x=-1 to x=1 is (alpha)/(beta) , then alpha-beta= (where alpha, beta are coprime to each other)

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If alpha and beta are the roots of x^2-4x+3 then find the 1/alpha +1/ beta

If alpha,beta are the zeros of the polynomial p(x)=x^(2)-a(x+1)-b such that (alpha+1)(beta+1)=0 then find value of b

Evaluate: int(x^(2)-1)/(x sqrt((x^(2)+alpha x+1)(x^(2)+beta x+1)))dx

If alpha, beta are the zeros of the polynomial f(x) = x^2 – 3x + 2 , then find 1/alpha + 1/beta .

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-SIX MARK QUESTIONS
  1. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  2. Using elementary tansformations, find the inverse of the matrix A=[(...

    Text Solution

    |

  3. Using matrix method, solve the system of linear equations x-2y=10,2x...

    Text Solution

    |

  4. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  5. Find the matrix x for which [(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4...

    Text Solution

    |

  6. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  7. If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0, then show that either ...

    Text Solution

    |

  8. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  9. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  10. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  11. Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+...

    Text Solution

    |

  12. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  13. Prove that (x-2)(x-1) is factor of |(1,1,x),(beta+1,beta+1,beta+x),(3,...

    Text Solution

    |

  14. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  15. Determination the product [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] [{:(,1,...

    Text Solution

    |

  16. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  17. Solve given system of equations by matrix method: (2)/(a)+(3)/(b)+(4...

    Text Solution

    |

  18. To raise money for an orphanage, students of three schools A, B and C ...

    Text Solution

    |

  19. Two cricket teams honored their players for three values, excellent ba...

    Text Solution

    |

  20. If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the sys...

    Text Solution

    |