Home
Class 12
MATHS
Solve given system of equations by matri...

Solve given system of equations by matrix method:
`(2)/(a)+(3)/(b)+(4)/(c)=-3,(5)/(a)+(4)/(b)-(6)/(c)=4,(3)/(a)-(2)/(b)-(2)/(c)=6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations using the matrix method, we start by rewriting the equations in a suitable form. The equations are: 1. \(\frac{2}{a} + \frac{3}{b} + \frac{4}{c} = -3\) 2. \(\frac{5}{a} + \frac{4}{b} - \frac{6}{c} = 4\) 3. \(\frac{3}{a} - \frac{2}{b} - \frac{2}{c} = 6\) Let us define: - \(x = \frac{1}{a}\) - \(y = \frac{1}{b}\) - \(z = \frac{1}{c}\) Now we can rewrite the equations in terms of \(x\), \(y\), and \(z\): 1. \(2x + 3y + 4z = -3\) 2. \(5x + 4y - 6z = 4\) 3. \(3x - 2y - 2z = 6\) ### Step 1: Form the Matrix Equation We can express the above equations in matrix form \(AX = B\), where: \[ A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 4 & -6 \\ 3 & -2 & -2 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad B = \begin{bmatrix} -3 \\ 4 \\ 6 \end{bmatrix} \] ### Step 2: Calculate the Determinant of Matrix \(A\) To find \(A^{-1}\), we first need to calculate the determinant of \(A\): \[ \text{det}(A) = 2 \begin{vmatrix} 4 & -6 \\ -2 & -2 \end{vmatrix} - 3 \begin{vmatrix} 5 & -6 \\ 3 & -2 \end{vmatrix} + 4 \begin{vmatrix} 5 & 4 \\ 3 & -2 \end{vmatrix} \] Calculating the minors: 1. \(\begin{vmatrix} 4 & -6 \\ -2 & -2 \end{vmatrix} = (4)(-2) - (-6)(-2) = -8 - 12 = -20\) 2. \(\begin{vmatrix} 5 & -6 \\ 3 & -2 \end{vmatrix} = (5)(-2) - (-6)(3) = -10 + 18 = 8\) 3. \(\begin{vmatrix} 5 & 4 \\ 3 & -2 \end{vmatrix} = (5)(-2) - (4)(3) = -10 - 12 = -22\) Now substituting back into the determinant formula: \[ \text{det}(A) = 2(-20) - 3(8) + 4(-22) = -40 - 24 - 88 = -152 \] ### Step 3: Calculate the Adjoint of Matrix \(A\) Next, we need to find the cofactors of each element in \(A\) to form the adjoint matrix. Calculating the cofactors: \[ C_{11} = \begin{vmatrix} 4 & -6 \\ -2 & -2 \end{vmatrix} = -20 \quad \Rightarrow \quad C_{11} = -20 \] \[ C_{12} = -\begin{vmatrix} 5 & -6 \\ 3 & -2 \end{vmatrix} = -8 \quad \Rightarrow \quad C_{12} = 8 \] \[ C_{13} = \begin{vmatrix} 5 & 4 \\ 3 & -2 \end{vmatrix} = -22 \quad \Rightarrow \quad C_{13} = -22 \] Continuing this process for all elements, we find: \[ \text{adj}(A) = \begin{bmatrix} -20 & 8 & -22 \\ -2 & -16 & 13 \\ -34 & 32 & -7 \end{bmatrix} \] ### Step 4: Calculate the Inverse of Matrix \(A\) Now we can find \(A^{-1}\): \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = \frac{1}{-152} \begin{bmatrix} -20 & 8 & -22 \\ -2 & -16 & 13 \\ -34 & 32 & -7 \end{bmatrix} \] ### Step 5: Solve for \(X\) Now we can calculate \(X\): \[ X = A^{-1}B = \frac{1}{-152} \begin{bmatrix} -20 & 8 & -22 \\ -2 & -16 & 13 \\ -34 & 32 & -7 \end{bmatrix} \begin{bmatrix} -3 \\ 4 \\ 6 \end{bmatrix} \] Calculating the product: 1. First row: \((-20)(-3) + (8)(4) + (-22)(6) = 60 + 32 - 132 = -40\) 2. Second row: \((-2)(-3) + (-16)(4) + (13)(6) = 6 - 64 + 78 = 20\) 3. Third row: \((-34)(-3) + (32)(4) + (-7)(6) = 102 + 128 - 42 = 188\) Thus, \[ X = \frac{1}{-152} \begin{bmatrix} -40 \\ 20 \\ 188 \end{bmatrix} = \begin{bmatrix} \frac{40}{152} \\ -\frac{20}{152} \\ -\frac{188}{152} \end{bmatrix} \] ### Step 6: Find \(a\), \(b\), and \(c\) Now we convert back to \(a\), \(b\), and \(c\): 1. \(x = \frac{1}{a} = \frac{40}{152} \Rightarrow a = \frac{152}{40} = 3.8\) 2. \(y = \frac{1}{b} = -\frac{20}{152} \Rightarrow b = -\frac{152}{20} = -7.6\) 3. \(z = \frac{1}{c} = -\frac{188}{152} \Rightarrow c = -\frac{152}{188} = -0.807\) ### Final Answer Thus, the solution to the system of equations is: \[ a = 3.8, \quad b = -7.6, \quad c = -0.807 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations by matrix method : 3x-4y=5 and 4x+2y=3

If (a)/(b)=(4)/(3), then (3a+2b)/(3a-2b)=?( a) -1 (b) 3 (c) 5(d)6

from the sum of (a)/(2)+(b)/(3)+(c)/(4) and (2a)/(3)+(3b)/(4)+(4c)/(5) subtract (a)/(6)+(b)/(12)+(c)/(20)

If a^(2)+ b^(2) + c^(2)=0 , then what is ((a^(4)-b^(4))^(3)+(b^(4)-c^(4))^(3)+(c^(4)-a^(4))^(3))/((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)) equal to?

If a:b:c=2:3:4, then (1)/(a):(1)/(b):(1)/(c) is equal to (1)/(4):(1)/(3):(1)/(2) b.4:3:2 c.6:4:3 d.none of these

The rationalising factor of root(7)(a^(4)b^(3)c^(5)) is (a) root(7)(a^(3)b^(4)c^(2)) (b) root(7)(a^(3)b^(4)c^(2)) (c) root(7)(a^(2)b^(3)c^(3)) (d) root(7)(a^(2)b^(4)c^(3))

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

The equation of the plane passing through the points A(2,3,-1) B(4,5,2) C(3,6,5) is

The HCF of the polynomials 12a^(3) b^(4) c^(2), 18a^(4) b^(3) c^(3) and 24a^(6) b^(2) c^(4) is ____

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-SIX MARK QUESTIONS
  1. Prove that |y z-x^2z x-y^2x y-z^2z x-y^2x y-z^2y z-x^2x y-z^2y z-x^2z ...

    Text Solution

    |

  2. Using elementary tansformations, find the inverse of the matrix A=[(...

    Text Solution

    |

  3. Using matrix method, solve the system of linear equations x-2y=10,2x...

    Text Solution

    |

  4. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  5. Find the matrix x for which [(3,2),(7,5)]x[(-1,1),(-2,1)]=[(2,-1),(0,4...

    Text Solution

    |

  6. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  7. If a+b+c=0and|(a-x,c,b),(c,b-x,a),(b,a,c-x)|=0, then show that either ...

    Text Solution

    |

  8. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  9. |((x-2)^2,(x-1)^2,x^2),((x-1)^2,x^2,(x+1)^2),(x^2,(x+1)^2,(x+2)^2)|=-8...

    Text Solution

    |

  10. Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab...

    Text Solution

    |

  11. Prove that: |(a,a+c,a-b),(b-c,b,b+a),(c+b,c-a,c)|=(a+b+c)(a^(2)+b^(2)+...

    Text Solution

    |

  12. If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respective...

    Text Solution

    |

  13. Prove that (x-2)(x-1) is factor of |(1,1,x),(beta+1,beta+1,beta+x),(3,...

    Text Solution

    |

  14. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  15. Determination the product [{:(,-4,4,4),(,-7,1,3),(,5,-3,-1):}] [{:(,1,...

    Text Solution

    |

  16. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  17. Solve given system of equations by matrix method: (2)/(a)+(3)/(b)+(4...

    Text Solution

    |

  18. To raise money for an orphanage, students of three schools A, B and C ...

    Text Solution

    |

  19. Two cricket teams honored their players for three values, excellent ba...

    Text Solution

    |

  20. If [(1,2,0),(-2,-1,-2),(0,-1,1)], find A^-1. Using A^-1, solve the sys...

    Text Solution

    |