Home
Class 12
MATHS
Write the value of tan^(-1)2+tan^(-1)3....

Write the value of `tan^(-1)2+tan^(-1)3`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(2) + \tan^{-1}(3) \), we can use the formula for the sum of two inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] ### Step 1: Identify \( x \) and \( y \) Here, we have \( x = 2 \) and \( y = 3 \). ### Step 2: Substitute \( x \) and \( y \) into the formula Substituting the values into the formula gives us: \[ \tan^{-1}(2) + \tan^{-1}(3) = \tan^{-1}\left(\frac{2 + 3}{1 - (2 \cdot 3)}\right) \] ### Step 3: Simplify the expression Now, we simplify the fraction: \[ = \tan^{-1}\left(\frac{5}{1 - 6}\right) = \tan^{-1}\left(\frac{5}{-5}\right) = \tan^{-1}(-1) \] ### Step 4: Evaluate \( \tan^{-1}(-1) \) The value of \( \tan^{-1}(-1) \) corresponds to an angle where the tangent is -1. This occurs at: \[ \tan^{-1}(-1) = -\frac{\pi}{4} \] ### Final Answer Thus, the value of \( \tan^{-1}(2) + \tan^{-1}(3) \) is: \[ -\frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Write the value of tan^(-1)a/b-tan^(-1)((a-b)/(a+b))

Write the value of cot(tan^(-1)a+cot^(-1)a)

Write the value of tan^(-1){tan((15pi)/4)}

The value of tan(2tan^(-1)(1/5))

Write the value of tan(2tan^(-1)((1)/(5)))

Write the principal value of tan^(-1)(-1)

Write the principal value of tan^(-1)[tan(3 pi)/(4)]

Write the principal value of tan^(-1)(-(1)/(sqrt(3)))

Write the principal value of tan^(-1)(tan((9 pi)/(8)))