Home
Class 12
MATHS
Find 'lambda' . If the vectors lambdahat...

Find `'lambda'` . If the vectors `lambdahati+hatj+2hatk, 2hati-hatj+lambdahatk`, and `hati+lambdahatj-hatk` are coplanar.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \lambda \hat{i} + \hat{j} + 2 \hat{k} \), \( 2 \hat{i} - \hat{j} + \lambda \hat{k} \), and \( \hat{i} + \lambda \hat{j} - \hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors is zero. This can be expressed using the determinant of a matrix formed by the components of the vectors. ### Step-by-Step Solution: 1. **Write the vectors in component form:** - Let \( \mathbf{A} = \lambda \hat{i} + \hat{j} + 2 \hat{k} \) - Let \( \mathbf{B} = 2 \hat{i} - \hat{j} + \lambda \hat{k} \) - Let \( \mathbf{C} = \hat{i} + \lambda \hat{j} - \hat{k} \) 2. **Set up the determinant:** The vectors are coplanar if the determinant of the matrix formed by their components is zero: \[ \begin{vmatrix} \lambda & 1 & 2 \\ 2 & -1 & \lambda \\ 1 & \lambda & -1 \end{vmatrix} = 0 \] 3. **Calculate the determinant:** Expanding the determinant: \[ = \lambda \begin{vmatrix} -1 & \lambda \\ \lambda & -1 \end{vmatrix} - 1 \begin{vmatrix} 2 & \lambda \\ 1 & -1 \end{vmatrix} + 2 \begin{vmatrix} 2 & -1 \\ 1 & \lambda \end{vmatrix} \] Now calculating each of these 2x2 determinants: - First determinant: \[ = \lambda((-1)(-1) - \lambda^2) = \lambda(1 - \lambda^2) = \lambda - \lambda^3 \] - Second determinant: \[ = 2(-1) - \lambda(1) = -2 - \lambda \] - Third determinant: \[ = 2\lambda - (-1)(1) = 2\lambda + 1 \] Putting it all together: \[ \lambda(1 - \lambda^2) - ( -2 - \lambda) + 2(2\lambda + 1) = 0 \] Simplifying: \[ \lambda - \lambda^3 + 2 + \lambda + 4\lambda + 2 = 0 \] \[ -\lambda^3 + 6\lambda + 4 = 0 \] 4. **Rearranging the equation:** \[ \lambda^3 - 6\lambda - 4 = 0 \] 5. **Finding the roots of the cubic equation:** We can use trial and error to find rational roots. Testing \( \lambda = -2 \): \[ (-2)^3 - 6(-2) - 4 = -8 + 12 - 4 = 0 \] Thus, \( \lambda = -2 \) is a root. 6. **Conclusion:** The value of \( \lambda \) for which the given vectors are coplanar is: \[ \lambda = -2 \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

Find lambda if the vectors hati+hatj+2hatk, lambdahati-hatj+hatk and 3hati-2hatj-hatk are coplanar.

Find lambda if the vectors hati+hatj+2hatk, lambdahati-hatj+hatk and 3hati-2hatj-hatk are co-planar.

Find the value of p, if the vectors hati - 2hatj + hatk , 2hati - 5hatj + phatk and 5hati - 9hatj + 4hatk are coplanar .

The value of ‘ lambda ’ so that the vectors hati - 3̂ hatj + hatk , 2̂ hati + lambda hatj + hatk and 3 hati + hatj - 2 hatk are coplanar, will be

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to