Home
Class 12
MATHS
Find the projection of hati+3hatj+7hatk ...

Find the projection of `hati+3hatj+7hatk` on the vector `2hati-3hatj+6hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \( \mathbf{A} = \hat{i} + 3\hat{j} + 7\hat{k} \) on the vector \( \mathbf{B} = 2\hat{i} - 3\hat{j} + 6\hat{k} \), we will follow these steps: ### Step 1: Identify the vectors Let: \[ \mathbf{A} = \hat{i} + 3\hat{j} + 7\hat{k} \] \[ \mathbf{B} = 2\hat{i} - 3\hat{j} + 6\hat{k} \] ### Step 2: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) The dot product of two vectors \( \mathbf{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \) and \( \mathbf{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = a_1b_1 + a_2b_2 + a_3b_3 \] Substituting the components of \( \mathbf{A} \) and \( \mathbf{B} \): \[ \mathbf{A} \cdot \mathbf{B} = (1)(2) + (3)(-3) + (7)(6) \] Calculating each term: \[ = 2 - 9 + 42 = 35 \] ### Step 3: Calculate the magnitude of vector \( \mathbf{B} \) The magnitude of vector \( \mathbf{B} \) is calculated as: \[ |\mathbf{B}| = \sqrt{b_1^2 + b_2^2 + b_3^2} \] Substituting the components of \( \mathbf{B} \): \[ |\mathbf{B}| = \sqrt{2^2 + (-3)^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] ### Step 4: Calculate the projection of \( \mathbf{A} \) on \( \mathbf{B} \) The formula for the projection of vector \( \mathbf{A} \) on vector \( \mathbf{B} \) is given by: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|^2} \mathbf{B} \] First, calculate \( |\mathbf{B}|^2 \): \[ |\mathbf{B}|^2 = 7^2 = 49 \] Now substitute the values into the projection formula: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{35}{49} \mathbf{B} \] Simplifying \( \frac{35}{49} \): \[ \frac{35}{49} = \frac{5}{7} \] Thus, the projection becomes: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{5}{7} (2\hat{i} - 3\hat{j} + 6\hat{k}) = \frac{10}{7}\hat{i} - \frac{15}{7}\hat{j} + \frac{30}{7}\hat{k} \] ### Final Answer The projection of \( \mathbf{A} \) on \( \mathbf{B} \) is: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{10}{7}\hat{i} - \frac{15}{7}\hat{j} + \frac{30}{7}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

find the projection of the vector hati+3hatj+7hatk on the vector 7hati-hatj+8 hatk

Find the projection of the vector hati-2hatj+hatk on the vector 4hati-4hatj+7hatk .

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .

Find the projection of vector veca=5hati-hatj-3hatk on the vector vecb=hati+hatj+hatk .

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

The unit vector which is orhtogonal to the vector 3hati+2hatj+6hatk and is coplanar with vectors 2hati+hatj+hatk and hati-hatj+hatk , is