Home
Class 12
MATHS
If [ (2x, 3)] [(1,2),(-3,0)][(x),(8)]=0,...

If `[ (2x, 3)] [(1,2),(-3,0)][(x),(8)]=0`, find 'x'

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the product of the matrices \([(2x, 3)][(1, 2), (-3, 0)][(x), (8)] = 0\), we will follow these steps: ### Step 1: Multiply the first two matrices We start by multiplying the first matrix \((2x, 3)\) with the second matrix \(\begin{pmatrix} 1 & 2 \\ -3 & 0 \end{pmatrix}\). The multiplication of a \(1 \times 2\) matrix with a \(2 \times 2\) matrix results in a \(1 \times 2\) matrix. \[ \begin{pmatrix} 2x & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} (2x \cdot 1 + 3 \cdot -3) & (2x \cdot 2 + 3 \cdot 0) \end{pmatrix} \] Calculating the elements: - First element: \(2x \cdot 1 + 3 \cdot -3 = 2x - 9\) - Second element: \(2x \cdot 2 + 3 \cdot 0 = 4x\) Thus, the result of the multiplication is: \[ \begin{pmatrix} 2x - 9 & 4x \end{pmatrix} \] ### Step 2: Multiply the result with the third matrix Now we multiply the resulting matrix \((2x - 9, 4x)\) with the third matrix \(\begin{pmatrix} x \\ 8 \end{pmatrix}\). The multiplication of a \(1 \times 2\) matrix with a \(2 \times 1\) matrix results in a \(1 \times 1\) matrix (a single value). \[ \begin{pmatrix} 2x - 9 & 4x \end{pmatrix} \begin{pmatrix} x \\ 8 \end{pmatrix} = (2x - 9) \cdot x + 4x \cdot 8 \] Calculating this: - First term: \((2x - 9) \cdot x = 2x^2 - 9x\) - Second term: \(4x \cdot 8 = 32x\) Thus, we have: \[ 2x^2 - 9x + 32x = 2x^2 + 23x \] ### Step 3: Set the result equal to zero According to the problem, this entire expression equals zero: \[ 2x^2 + 23x = 0 \] ### Step 4: Factor the equation We can factor out \(x\): \[ x(2x + 23) = 0 \] ### Step 5: Solve for \(x\) Setting each factor equal to zero gives us: 1. \(x = 0\) 2. \(2x + 23 = 0 \Rightarrow 2x = -23 \Rightarrow x = -\frac{23}{2}\) ### Final Solution Thus, the values of \(x\) are: \[ x = 0 \quad \text{or} \quad x = -\frac{23}{2} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Solve the matrix equations: [(x,-5,-1)][(1, 0, 2) ,( 0,2 ,1),( 2, 0, 3)][(x),(4),( 1)]=0 (iv) [2x 3][(1, 2),(-3, 0)][(x),(8)]=0

If [2x3][[1,2-3,0]][[x3]]=O, find x

[[2x,3]][[1,2-3,0]][[x3]]=0

If x={: ((2,-1),(3,0)) :}andg(x)=x^(2)+x-2 , find g(x).

If [[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]] , then [[x, y], [2, 0]]^(-1)=

Find 'x' and 'y', if 2[(1,3),(0,x)]+[(y,0),(1,2)]=[(5,6),(1,8)]

find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

If A=[[1,3,2],[-1,2,0],[0,-1,1]] , then find a matrix X such that A^(2)-2A-X=0

If |[1,x,x^2] , [x,x^2,1] , [x^2,1,x]|=3 then find the value of |[x^3-1, 0, x-x^4] , [0,x-x^4, x^3-1] , [x-x^4, x^3-1, 0]|

From the equation : 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) find x-y