Home
Class 12
MATHS
Differentiate sin sqrtx+cos(x^2) w.r.t. ...

Differentiate sin `sqrtx+cos(x^2)` w.r.t. x

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \sin(\sqrt{x}) + \cos(x^2) \) with respect to \( x \), we will use the chain rule and the basic differentiation rules. Here’s the step-by-step solution: ### Step 1: Differentiate \( \sin(\sqrt{x}) \) Using the chain rule: \[ \frac{d}{dx} \sin(u) = \cos(u) \cdot \frac{du}{dx} \] where \( u = \sqrt{x} \). Now, we need to find \( \frac{du}{dx} \): \[ u = \sqrt{x} = x^{1/2} \] \[ \frac{du}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] Now, applying the chain rule: \[ \frac{d}{dx} \sin(\sqrt{x}) = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} = \frac{\cos(\sqrt{x})}{2\sqrt{x}} \] ### Step 2: Differentiate \( \cos(x^2) \) Again, using the chain rule: \[ \frac{d}{dx} \cos(v) = -\sin(v) \cdot \frac{dv}{dx} \] where \( v = x^2 \). Now, we find \( \frac{dv}{dx} \): \[ v = x^2 \] \[ \frac{dv}{dx} = 2x \] Now, applying the chain rule: \[ \frac{d}{dx} \cos(x^2) = -\sin(x^2) \cdot 2x = -2x \sin(x^2) \] ### Step 3: Combine the results Now, we combine the derivatives from Step 1 and Step 2: \[ \frac{d}{dx} f(x) = \frac{\cos(\sqrt{x})}{2\sqrt{x}} - 2x \sin(x^2) \] ### Final Answer Thus, the derivative of \( f(x) = \sin(\sqrt{x}) + \cos(x^2) \) with respect to \( x \) is: \[ f'(x) = \frac{\cos(\sqrt{x})}{2\sqrt{x}} - 2x \sin(x^2) \] ---
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin x w.r.t. cos x

Differentiate sin^2x w.r.t. e^(cosx) .

Differentiate sqrt(sin^(-1)sqrt(x)) w.r.t. x, ( 0 lt x lt 1 )

Answer the following questions: Differentiate sin(x^2 + x) w.r.t. x

Differentiate sin^(2)(x^(2)) w.r.t. x^(2) .

Differentiate sqrt(cot^(-1)sqrtx) , w.r.t. x.

Differentiate x^(x)sin^(-1)sqrtx w.r.t. x.

Differentiate sin(x^(2)) w.r.t. e^(sin x)

Differentiate (e^x)/(sin x*tan x) w.r.t. x

Differentiate sqrt(sin(e^(x))) w.r.t. x.