Home
Class 12
MATHS
Evaluate intsqrt((x)/(1-x^3))dx...

Evaluate `intsqrt((x)/(1-x^3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \sqrt{\frac{x}{1-x^3}} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ \int \frac{\sqrt{x}}{\sqrt{1-x^3}} \, dx \] ### Step 2: Substitution Let us use the substitution \(t = x^{3/2}\). Then, we have: \[ x = t^{2/3} \] Differentiating both sides gives: \[ dx = \frac{2}{3} t^{-1/3} \, dt \] ### Step 3: Substitute in the Integral Now, we substitute \(x\) and \(dx\) in the integral: \[ \sqrt{x} = \sqrt{t^{2/3}} = t^{1/3} \] \[ 1 - x^3 = 1 - (t^{2/3})^3 = 1 - t^2 \] Thus, the integral becomes: \[ \int \frac{t^{1/3}}{\sqrt{1-t^2}} \cdot \frac{2}{3} t^{-1/3} \, dt \] This simplifies to: \[ \frac{2}{3} \int \frac{1}{\sqrt{1-t^2}} \, dt \] ### Step 4: Evaluate the Integral The integral \(\int \frac{1}{\sqrt{1-t^2}} \, dt\) is a standard integral that evaluates to \(\sin^{-1}(t)\). Therefore, we have: \[ \frac{2}{3} \sin^{-1}(t) + C \] ### Step 5: Substitute Back Now, we substitute back \(t = x^{3/2}\): \[ \frac{2}{3} \sin^{-1}(x^{3/2}) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \sqrt{\frac{x}{1-x^3}} \, dx = \frac{2}{3} \sin^{-1}(x^{3/2}) + C \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate intsqrt ((1-x)/(1+x))dx

Evaluate: intsqrt ((1+x)/(1-x))dx

intsqrt((x-a)/(b-x))dx

Evaluate: intsqrt ((1-x)/(1+x))dx

Evaluate intsqrt((1-x)/(1+x))dx .

Evaluate intsqrt(x/(1-x))dx

Evaluate intsqrt((x-1)(2-x))dx .

intsqrt((1+x)/(1-x))dx=?

Evaluate: intsqrt((1-x)/(1+x))\ dx

Evaluate: intsqrt ((a-x)/(a+x))dx