Home
Class 12
MATHS
Evaluate int(-1)^(1)(x^7+tan^5x + x+ 1) ...

Evaluate `int_(-1)^(1)(x^7+tan^5x + x+ 1) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \[ \int_{-1}^{1} (x^7 + \tan^5 x + x + 1) \, dx, \] we will break it down into manageable parts and utilize properties of odd and even functions. ### Step 1: Break down the integral We can separate the integral into four parts: \[ \int_{-1}^{1} (x^7 + \tan^5 x + x + 1) \, dx = \int_{-1}^{1} x^7 \, dx + \int_{-1}^{1} \tan^5 x \, dx + \int_{-1}^{1} x \, dx + \int_{-1}^{1} 1 \, dx. \] ### Step 2: Evaluate each integral 1. **Evaluate \(\int_{-1}^{1} x^7 \, dx\)**: - The function \(x^7\) is an odd function because \(f(-x) = -f(x)\). Therefore, the integral over a symmetric interval around zero is zero: \[ \int_{-1}^{1} x^7 \, dx = 0. \] 2. **Evaluate \(\int_{-1}^{1} \tan^5 x \, dx\)**: - The function \(\tan^5 x\) is also an odd function. Thus, this integral is also zero: \[ \int_{-1}^{1} \tan^5 x \, dx = 0. \] 3. **Evaluate \(\int_{-1}^{1} x \, dx\)**: - The function \(x\) is an odd function, so this integral is also zero: \[ \int_{-1}^{1} x \, dx = 0. \] 4. **Evaluate \(\int_{-1}^{1} 1 \, dx\)**: - The integral of 1 over the interval from -1 to 1 is simply the length of the interval: \[ \int_{-1}^{1} 1 \, dx = 1 - (-1) = 2. \] ### Step 3: Combine the results Now we can combine the results of all four integrals: \[ \int_{-1}^{1} (x^7 + \tan^5 x + x + 1) \, dx = 0 + 0 + 0 + 2 = 2. \] ### Final Answer Thus, the value of the integral is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^(1)x(1-x)^(5)dx

Evaluate int(1)/(1-tan x)dx

2.Evaluate int(1)/(5x+7)dx

Evaluate: int_(0)^(1)x(tan^(-1)x)^(2)dx

Evaluate: int(1)/(a+b tan x)dx

Evaluate int(1)/(x(x^(7)+1))dx

Evaluate int_(-1)^(1)5x^(4)sqrt(x^(5)+1)dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Evaluate int (x+tan^(-1)x)dx