Home
Class 12
MATHS
Evaluate int(4 cot x - 5 tan x)^2 dx...

Evaluate `int(4 cot x - 5 tan x)^2 dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (4 \cot x - 5 \tan x)^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand We start by expanding the square: \[ (4 \cot x - 5 \tan x)^2 = (4 \cot x)^2 - 2(4 \cot x)(5 \tan x) + (5 \tan x)^2 \] Calculating each term: - \( (4 \cot x)^2 = 16 \cot^2 x \) - \( (5 \tan x)^2 = 25 \tan^2 x \) - \( -2(4 \cot x)(5 \tan x) = -40 \) Thus, we have: \[ (4 \cot x - 5 \tan x)^2 = 16 \cot^2 x + 25 \tan^2 x - 40 \] ### Step 2: Rewrite in terms of sine and cosine Using the identities \( \cot x = \frac{\cos x}{\sin x} \) and \( \tan x = \frac{\sin x}{\cos x} \), we can express \( \cot^2 x \) and \( \tan^2 x \): \[ \cot^2 x = \frac{\cos^2 x}{\sin^2 x}, \quad \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \] Thus, we rewrite the integral: \[ \int (16 \cot^2 x + 25 \tan^2 x - 40) \, dx = \int \left( 16 \frac{\cos^2 x}{\sin^2 x} + 25 \frac{\sin^2 x}{\cos^2 x} - 40 \right) \, dx \] ### Step 3: Simplify the integral We can use the identity \( \tan^2 x + 1 = \sec^2 x \) and \( \cot^2 x + 1 = \csc^2 x \): \[ \cot^2 x = \csc^2 x - 1, \quad \tan^2 x = \sec^2 x - 1 \] Substituting these into the integral: \[ \int (16 (\csc^2 x - 1) + 25 (\sec^2 x - 1) - 40) \, dx \] This simplifies to: \[ \int (16 \csc^2 x + 25 \sec^2 x - 16 - 25 - 40) \, dx = \int (16 \csc^2 x + 25 \sec^2 x - 81) \, dx \] ### Step 4: Integrate term by term Now we can integrate each term separately: 1. \( \int \csc^2 x \, dx = -\cot x \) 2. \( \int \sec^2 x \, dx = \tan x \) 3. The integral of a constant \( -81 \) is \( -81x \) Thus, we have: \[ \int (16 \csc^2 x + 25 \sec^2 x - 81) \, dx = 16(-\cot x) + 25\tan x - 81x + C \] ### Final Answer Combining everything, we get: \[ -16 \cot x + 25 \tan x - 81x + C \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1+cos4x)/(cot x-tan x)dx

int(cot x-tan x)^(2)dx

Evaluate : int tan 2x tan 3x tan 5x dx

Evaluate int tanx tan 2x tan 3x dx .

Evaluate: int(2tan x-3cot x)^(2)dx

int(1+cos4x)/(cot x-tan x)dx

int(1+cos4x)/(cot x-tan x)dx

Evaluate: int(cot x)/(sin x)dx

Evaluate : int(tan x+cot x)dx

Evaluate: (i) int(sec x tan x)/(3sec x+5)dx (ii) int(1-cot x)/(1+cot x)dx