Home
Class 12
MATHS
If the magnitude of the vector product o...

If the magnitude of the vector product of the vector `hati+hatj+hatk` with a unit vector along the sum of vector `2hati+4hatj-5hatk` and `lambda hati+2hatj+3hatk` is equal to `sqrt2`, then find the value of `'lambda'`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the magnitude of the vector product of the vector \( \hat{i} + \hat{j} + \hat{k} \) with a unit vector along the sum of the vectors \( 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \lambda \hat{i} + 2\hat{j} + 3\hat{k} \) is equal to \( \sqrt{2} \). ### Step-by-Step Solution: 1. **Define the Vectors:** Let \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) (Vector A). Let \( \mathbf{B} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) (Vector B). Let \( \mathbf{C} = \lambda \hat{i} + 2\hat{j} + 3\hat{k} \) (Vector C). 2. **Calculate the Sum of Vectors B and C:** \[ \mathbf{B} + \mathbf{C} = (2 + \lambda)\hat{i} + (4 + 2)\hat{j} + (-5 + 3)\hat{k} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k} \] 3. **Find the Magnitude of the Sum:** The magnitude of \( \mathbf{B} + \mathbf{C} \) is given by: \[ |\mathbf{B} + \mathbf{C}| = \sqrt{(2 + \lambda)^2 + 6^2 + (-2)^2} \] Simplifying this: \[ |\mathbf{B} + \mathbf{C}| = \sqrt{(2 + \lambda)^2 + 36 + 4} = \sqrt{(2 + \lambda)^2 + 40} \] 4. **Calculate the Unit Vector:** The unit vector along \( \mathbf{B} + \mathbf{C} \) is: \[ \hat{u} = \frac{\mathbf{B} + \mathbf{C}}{|\mathbf{B} + \mathbf{C}|} = \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + \lambda)^2 + 40}} \] 5. **Find the Vector Product:** Now we need to calculate the vector product \( \mathbf{A} \times \hat{u} \): \[ \mathbf{A} \times \hat{u} = \left(\hat{i} + \hat{j} + \hat{k}\right) \times \left(\frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + \lambda)^2 + 40}}\right) \] Using the determinant method to calculate the cross product: \[ \mathbf{A} \times \hat{u} = \frac{1}{\sqrt{(2 + \lambda)^2 + 40}} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 + \lambda & 6 & -2 \end{vmatrix} \] 6. **Calculate the Determinant:** Expanding the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 6 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 + \lambda & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 + \lambda & 6 \end{vmatrix} \] This results in: \[ = \hat{i}(-2 - 6) - \hat{j}(-2 - (2 + \lambda)) + \hat{k}(6 - (2 + \lambda)) \] Simplifying gives: \[ = -8\hat{i} + (4 + \lambda)\hat{j} + (4 - \lambda)\hat{k} \] 7. **Magnitude of the Vector Product:** The magnitude of the vector product is: \[ |\mathbf{A} \times \hat{u}| = \frac{\sqrt{(-8)^2 + (4 + \lambda)^2 + (4 - \lambda)^2}}{\sqrt{(2 + \lambda)^2 + 40}} \] Simplifying the numerator: \[ = \sqrt{64 + (4 + \lambda)^2 + (4 - \lambda)^2} \] Expanding gives: \[ = \sqrt{64 + (16 + 8\lambda + \lambda^2) + (16 - 8\lambda + \lambda^2)} = \sqrt{64 + 32 + 2\lambda^2} = \sqrt{96 + 2\lambda^2} \] 8. **Setting the Magnitude Equal to \( \sqrt{2} \):** We set the magnitude equal to \( \sqrt{2} \): \[ \frac{\sqrt{96 + 2\lambda^2}}{\sqrt{(2 + \lambda)^2 + 40}} = \sqrt{2} \] Squaring both sides: \[ \frac{96 + 2\lambda^2}{(2 + \lambda)^2 + 40} = 2 \] Cross-multiplying gives: \[ 96 + 2\lambda^2 = 2((2 + \lambda)^2 + 40) \] Expanding and simplifying leads to: \[ 96 + 2\lambda^2 = 2(4 + 4\lambda + \lambda^2 + 40) = 2(44 + 4\lambda + \lambda^2) \] \[ 96 + 2\lambda^2 = 88 + 8\lambda + 2\lambda^2 \] Simplifying gives: \[ 96 - 88 = 8\lambda \implies 8 = 8\lambda \implies \lambda = 1 \] ### Final Answer: The value of \( \lambda \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

The scalar product of the vector hati+hatj+hatk with a unit vedctor along the sum of the vectors 2hati+4hatj-5hatk and lamda hati+2hatj+3hatk is equal to one. Find the value of lamda .

Find as unit vector paralel to the sum of the vectors 2hati+3hatj-5hatk and hati+2hatj+3hatk

The unit vector parallel to the resultant vector of 2hati+4hatj-5hatk and hati+2hatj+3hatk is

Find the unit vector parallel to the resultant vector of 2hati+4hatj-5hatk and hati+2hatj+3hatk .

The unit vector parallel to the resultant of the vectors 2hati+3hatj-hatk and 4hati-3hatj+2hatk is

Find a unit vector parallel to the sum of the vector (hati + hatj + hatk) and (2hati - 3hatj + 5hatk) .

If the projection of the vector hati + 2 hatj + hatk on the sum of the two vectors 2hati + 4hatj - 5hatk and -lamdahati+2hatj+ 3hatk is 1, then lamda is equal to _______

If vectors 2hati - 3hatj-5hatk and 2hati-3 hatj-ahatk are equal vectors, then the value of a is

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .