Home
Class 12
MATHS
If veca=3hati+4hatj+5hatk and vecbeta =2...

If `veca=3hati+4hatj+5hatk` and `vecbeta =2hati+hatj-4hatk` , then express `vecbeta=vecbeta_1+vecbeta_2` such that `vecbeta_1||vecalpha` and `vecbeta_2botvecalpha`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \(\vec{\beta}\) as the sum of two vectors \(\vec{\beta_1}\) and \(\vec{\beta_2}\), where \(\vec{\beta_1}\) is parallel to \(\vec{\alpha}\) and \(\vec{\beta_2}\) is perpendicular to \(\vec{\alpha}\). Given: \[ \vec{\alpha} = 3\hat{i} + 4\hat{j} + 5\hat{k} \] \[ \vec{\beta} = 2\hat{i} + \hat{j} - 4\hat{k} \] ### Step 1: Express \(\vec{\beta_1}\) in terms of \(\vec{\alpha}\) Since \(\vec{\beta_1}\) is parallel to \(\vec{\alpha}\), we can express it as: \[ \vec{\beta_1} = \lambda \vec{\alpha} \] where \(\lambda\) is a scalar. Substituting \(\vec{\alpha}\): \[ \vec{\beta_1} = \lambda(3\hat{i} + 4\hat{j} + 5\hat{k}) = 3\lambda \hat{i} + 4\lambda \hat{j} + 5\lambda \hat{k} \] ### Step 2: Express \(\vec{\beta_2}\) We know that: \[ \vec{\beta} = \vec{\beta_1} + \vec{\beta_2} \] Thus, we can express \(\vec{\beta_2}\) as: \[ \vec{\beta_2} = \vec{\beta} - \vec{\beta_1} \] Substituting the expressions for \(\vec{\beta}\) and \(\vec{\beta_1}\): \[ \vec{\beta_2} = (2\hat{i} + \hat{j} - 4\hat{k}) - (3\lambda \hat{i} + 4\lambda \hat{j} + 5\lambda \hat{k}) \] This simplifies to: \[ \vec{\beta_2} = (2 - 3\lambda)\hat{i} + (1 - 4\lambda)\hat{j} + (-4 - 5\lambda)\hat{k} \] ### Step 3: Use the condition that \(\vec{\beta_2}\) is perpendicular to \(\vec{\alpha}\) For \(\vec{\beta_2}\) to be perpendicular to \(\vec{\alpha}\), their dot product must equal zero: \[ \vec{\beta_2} \cdot \vec{\alpha} = 0 \] Substituting the expressions: \[ [(2 - 3\lambda)\hat{i} + (1 - 4\lambda)\hat{j} + (-4 - 5\lambda)\hat{k}] \cdot (3\hat{i} + 4\hat{j} + 5\hat{k}) = 0 \] Calculating the dot product: \[ (2 - 3\lambda) \cdot 3 + (1 - 4\lambda) \cdot 4 + (-4 - 5\lambda) \cdot 5 = 0 \] Expanding: \[ 6 - 9\lambda + 4 - 16\lambda - 20 - 25\lambda = 0 \] Combining like terms: \[ (6 + 4 - 20) + (-9\lambda - 16\lambda - 25\lambda) = 0 \] This simplifies to: \[ -10 - 50\lambda = 0 \] Solving for \(\lambda\): \[ 50\lambda = -10 \implies \lambda = -\frac{1}{5} \] ### Step 4: Substitute \(\lambda\) back to find \(\vec{\beta_1}\) and \(\vec{\beta_2}\) Substituting \(\lambda\) into \(\vec{\beta_1}\): \[ \vec{\beta_1} = 3\left(-\frac{1}{5}\right)\hat{i} + 4\left(-\frac{1}{5}\right)\hat{j} + 5\left(-\frac{1}{5}\right)\hat{k} \] Calculating: \[ \vec{\beta_1} = -\frac{3}{5}\hat{i} - \frac{4}{5}\hat{j} - 1\hat{k} \] Now substituting \(\lambda\) into \(\vec{\beta_2}\): \[ \vec{\beta_2} = (2 - 3(-\frac{1}{5}))\hat{i} + (1 - 4(-\frac{1}{5}))\hat{j} + (-4 - 5(-\frac{1}{5}))\hat{k} \] Calculating: \[ \vec{\beta_2} = \left(2 + \frac{3}{5}\right)\hat{i} + \left(1 + \frac{4}{5}\right)\hat{j} + \left(-4 + 1\right)\hat{k} \] This simplifies to: \[ \vec{\beta_2} = \frac{10}{5} + \frac{3}{5} = \frac{13}{5}\hat{i} + \frac{9}{5}\hat{j} - 3\hat{k} \] ### Final Result Thus, we have: \[ \vec{\beta_1} = -\frac{3}{5}\hat{i} - \frac{4}{5}\hat{j} - 1\hat{k} \] \[ \vec{\beta_2} = \frac{13}{5}\hat{i} + \frac{9}{5}\hat{j} - 3\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|9 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA+vecB| will be

Given veca = hati-hatj+hatk and vecb = 2hati-4hatj-3hatk , find the magnitude of veca

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk then value of |vecAxxvecB| will be

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be