Home
Class 12
MATHS
Prove that int0^a f(x)dx=int0^af(a-x)dx,...

Prove that `int_0^a f(x)dx=int_0^af(a-x)dx`, hence evaluate `int_0^pi(x sin x)/(1+cos^2 x)dx`

Text Solution

Verified by Experts

The correct Answer is:
`pi^2/4`
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|9 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

I= int_0^(pi)(x sin x)/(1+cos^(2)x)dx

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^( pi/2)(sin x)/(1+cos x)dx

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

int_(0)^(pi) x sin x. cos^(2) x dx

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

int_(0)^(pi) x sin x cos^(2)x\ dx

int_0^pi sin^4x cos^4x dx