Home
Class 12
MATHS
If sin (sin^(-1)(3/5)+cos^(-1)x)=1 then ...

If sin `(sin^(-1)(3/5)+cos^(-1)x)=1` then find value of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin\left(\sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}(x)\right) = 1 \), we can follow these steps: ### Step 1: Understand the equation The equation states that the sine of the sum of two angles is equal to 1. The sine function reaches its maximum value of 1 at \( \frac{\pi}{2} \). ### Step 2: Set up the equation From the equation, we can deduce: \[ \sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}(x) = \frac{\pi}{2} \] ### Step 3: Rearrange the equation Now, we can rearrange this equation to isolate \( \cos^{-1}(x) \): \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}\left(\frac{3}{5}\right) \] ### Step 4: Use the identity Using the identity \( \cos^{-1}(a) = \sin^{-1}(\sqrt{1 - a^2}) \), we can express \( \cos^{-1}(x) \) in terms of sine: \[ x = \cos\left(\frac{\pi}{2} - \sin^{-1}\left(\frac{3}{5}\right)\right) = \sin\left(\sin^{-1}\left(\frac{3}{5}\right)\right) \] ### Step 5: Calculate the value of \( x \) Since \( \sin\left(\sin^{-1}\left(\frac{3}{5}\right)\right) = \frac{3}{5} \), we find: \[ x = \frac{3}{5} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{3}{5}} \] ---
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If sin(sin^(-1)(1)/(5)+cos^(-1)x)=1 then find the value of x.

If: sin(sin^(-1)(1/5) + cos^(-1)x)=1 , then: x=

If sin(sin^(-1)((1)/(5))+cos^(-1)(x))=1 Find the value of x.

If sin(sin^(-1)((1)/(5))+cos^(-1)(x))=1 Find the value of x

If sin (sin^(-1).(1)/(5) + cos^(-1) x) = 1 , then find the value of x

If cos(sin^(-1)((2)/(5))+cos^(-1)x)=0 find the value of x.

If sin(cos^(-1)(5)/(13)+sin^(-1)x)=1 find the value of x.