Home
Class 12
MATHS
If A=[{:(2,1),(0,5):}], find |A^(-1)|...

If `A=[{:(2,1),(0,5):}]`, find `|A^(-1)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the inverse of the matrix \( A = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ |A| = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = 1 \) - \( c = 0 \) - \( d = 5 \) Substituting these values into the formula: \[ |A| = (2)(5) - (1)(0) = 10 - 0 = 10 \] ### Step 2: Check if A is Invertible A matrix is invertible if its determinant is non-zero. Since \( |A| = 10 \), which is non-zero, matrix \( A \) is invertible. ### Step 3: Use the Property of Determinants The determinant of the inverse of a matrix is given by the formula: \[ |A^{-1}| = \frac{1}{|A|} \] Using the determinant we calculated in Step 1: \[ |A^{-1}| = \frac{1}{10} \] ### Final Answer Thus, the determinant of the inverse of matrix \( A \) is: \[ |A^{-1}| = \frac{1}{10} \] ---
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If 2[{:(3,4),(5,x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}] , find (x-y).

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] . find A^(2)-5A+6I and hence , find a matrix X such that A^(2)-5A+6I+X=O .

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A= [{:(2, -5), (0, 1):}]" and I" = [{:(1, 0), (0, 1):}] then find the matrix X such that 4A-2X + I = O.

If A = [{:(2, -3), (4, 1):}], B = [{:(2, 3), (5, 0):}]" and " C = [{:(-1, 2),(0, 5):}] then find A(B + C).

If A^(-1)=[{:(,3,-1,-1),(,1,2,3),(,5,-2,2):}]=[{:(,1,2,-2),(,-1,3,0),(,0,-2,1):}]"find (AB)"^(-1) .

If A = [(2,0,1),(-1,1,5)] and B = [(-1,1,0),(0,1,-2)] then find AB'

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .