Home
Class 12
MATHS
If y=|x|, then find dy/dx....

If y=|x|, then find dy/dx.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = |x| \), we will analyze the function based on the definition of the absolute value and differentiate it piecewise. ### Step-by-Step Solution: 1. **Understanding the Absolute Value Function**: The absolute value function \( y = |x| \) can be expressed in piecewise form: \[ y = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \] 2. **Differentiating for \( x > 0 \)**: For \( x > 0 \), we have: \[ y = x \] The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{d}{dx}(x) = 1 \] 3. **Differentiating for \( x < 0 \)**: For \( x < 0 \), we have: \[ y = -x \] The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{d}{dx}(-x) = -1 \] 4. **Combining the Results**: Therefore, we can summarize the derivative as: \[ \frac{dy}{dx} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases} \] Note that at \( x = 0 \), the derivative is not defined because the function has a cusp. ### Final Answer: \[ \frac{dy}{dx} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If y=e^x then find dy/dx

If y=x|x| , then find (dy/dx)_(x=-1)

If y= 4^x , then find dy/dx

If y=x^5 , then find dy//dx .

If y=x|x| , find dy/dx

If y=x|x|, find (dy)/(dx) for x<0

"If "xy+y^(2)=tan x + y," then find "(dy)/(dx).

If 2x + 3y=cos x then find (dy/dx)

If y=cos^(2) x , then find (dy)/(dx) .

y^(x) = x^(y) then find dy/dx