Home
Class 12
MATHS
If y=sinx + tan^(-1)(1), find dy/dx...

If `y=sinx + tan^(-1)(1)`, find dy/dx

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin x + \tan^{-1}(1) \) with respect to \( x \), we can follow these steps: ### Step 1: Identify the components of the function We have: \[ y = \sin x + \tan^{-1}(1) \] ### Step 2: Simplify the constant We know that: \[ \tan^{-1}(1) = \frac{\pi}{4} \] Thus, we can rewrite \( y \) as: \[ y = \sin x + \frac{\pi}{4} \] ### Step 3: Differentiate both sides with respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sin x) + \frac{d}{dx}\left(\frac{\pi}{4}\right) \] ### Step 4: Apply the differentiation rules Using the differentiation rules: - The derivative of \( \sin x \) is \( \cos x \). - The derivative of a constant (in this case, \( \frac{\pi}{4} \)) is \( 0 \). Thus, we have: \[ \frac{dy}{dx} = \cos x + 0 \] ### Step 5: Write the final answer Therefore, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \cos x \] ---
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

If x+y=tan^(-1)(xy), find (dy)/(dx)

If y=tan^(-1)((1-x)/(1+x)), find (dy)/(dx)

y= x^(3)tan^(-1)x , Find dy/dx

y= x^(tan^(-1_(x))) ,Find dy/dx

If tan(x+y)+tan(x-y)=1, find (dy)/(dx)

If y=sinx+e^(x), Then find (dy)/(dx) .

y=tan(sin^(-1)x) then find (dy)/(dx)

If y=e^((tan^(-1)x)^(3) then find (dy)/(dx)

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

y=(x^(2)+1)tan^(-l)x find (dy)/(dx)