Home
Class 12
MATHS
Find the mimimum value of sin x cos x....

Find the mimimum value of sin x cos x.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( f(x) = \sin x \cos x \), we can follow these steps: ### Step 1: Rewrite the function We can use the double angle identity for sine, which states that: \[ \sin(2x) = 2 \sin x \cos x \] Thus, we can express \( f(x) \) as: \[ f(x) = \sin x \cos x = \frac{1}{2} \sin(2x) \] ### Step 2: Determine the range of \( \sin(2x) \) The sine function has a range of \([-1, 1]\). Therefore, the range of \( \sin(2x) \) is also \([-1, 1]\). ### Step 3: Find the range of \( f(x) \) Since \( f(x) = \frac{1}{2} \sin(2x) \), we can find the range of \( f(x) \) by multiplying the range of \( \sin(2x) \) by \(\frac{1}{2}\): \[ \text{Range of } f(x) = \left[-\frac{1}{2}, \frac{1}{2}\right] \] ### Step 4: Identify the minimum value From the range we found in Step 3, the minimum value of \( f(x) \) is: \[ -\frac{1}{2} \] ### Conclusion Thus, the minimum value of \( \sin x \cos x \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of sin x + cos x.

(i) Find the maximum and minimum values of sin^(4)x + cos^(2)x and hence or otherwise find the maximum value of sin^(1000)x + cos^(2008)x . (ii) Find the maximum value of cos (cos x)

Find the minimum value of 2^("sin" x) + 2^("cos" x)

Find the maximum value of 4sin^(2)x+3cos^(2)x+sin((x)/(2))+cos((x)/(2))

If the maximum and minimum value of (sin x-cos x-1)(sin x+cos x-1)AA x in R is M and m the n find value of (M-4m)

If sin2x=(1)/(5). Find the value of (sin x+cos x)

The minimum value of sin x((1-cos x)/(sin x)+(sin x)/(1-cos x)) is

Find the absolute maximum value and the absolute minimum value of f(x)=sin x+cos x in [0,pi]

Find the maximum value of sqrt(3)sin x+cos x and x for which a maximum value occurs.