Home
Class 12
MATHS
Evaluate : int(sinx)/(sin 2x)dx...

Evaluate : `int(sinx)/(sin 2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\sin x}{\sin 2x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the integral as: \[ \int \frac{\sin x}{\sin 2x} \, dx = \int \frac{\sin x}{2 \sin x \cos x} \, dx \] ### Step 2: Simplify the expression Now, we can simplify the fraction: \[ \int \frac{\sin x}{2 \sin x \cos x} \, dx = \int \frac{1}{2 \cos x} \, dx \] ### Step 3: Factor out the constant We can factor out the constant \( \frac{1}{2} \): \[ \int \frac{1}{2 \cos x} \, dx = \frac{1}{2} \int \sec x \, dx \] ### Step 4: Integrate \( \sec x \) The integral of \( \sec x \) is known to be: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] Thus, we have: \[ \frac{1}{2} \int \sec x \, dx = \frac{1}{2} \left( \ln |\sec x + \tan x| + C \right) \] ### Step 5: Write the final answer Putting it all together, we get: \[ \int \frac{\sin x}{\sin 2x} \, dx = \frac{1}{2} \ln |\sec x + \tan x| + C \] ### Summary of the steps: 1. Rewrite the integral using the identity for \( \sin 2x \). 2. Simplify the fraction. 3. Factor out the constant. 4. Integrate \( \sec x \). 5. Write the final answer.
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(1+sin x) dx

int(sin(x-a))/(sinx)dx

int(sinx)/(1-sin^(2)x)dx=

Evaluate: int(cosx-sinx)/(1+sin2x)dx

Evaluate : int(sinx)/(sin(x-alpha))dx .

Evaluate : (i) int(sin4x)/(cos2x)dx (ii) int(sin4x)/(sinx)dx

int (sin2x)/(sinx )dx = ?

Evaluate int(1)/(sin x- sin 2x)dx .

int(sin2x)/(3+2sinx)^2dx=

Evaluate : int(sinx-cosx)/(3+2sin2x)dx .