Home
Class 12
MATHS
lim(x->0) sin(x^2)/(ln(cos(2x^2-x)) is e...

`lim_(x->0) sin(x^2)/(ln(cos(2x^2-x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to

lim_(x rarr0x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to 2 (b) -2(c)1 (d)

The value of lim_(x rarr0)(sin3x^(2))/(ln(cos(2x^(2)-x))) is

lim_(x rarr0)(sin(6x^(2)))/(ln cos(2x^(2)-x))

lim_(x rarr0)(ln(sin3x))/(ln(sin x)) is equal to

lim_(x rarr0)(ln(sin2x))/(ln(sin x)) is equals to a.0 b.1 c.2 d.non x rarr0ln(sin x) existent

lim_(x to 0) (sin (pi cos^(2)x))/(x^(2)) is equal to ,

The value of lim_(x to 0) ((e^x-1)log(1+x))/sin^2x is equal to

The value of the lim_(x rarr0)(sin(5x^(5)+4x^(4)+3x^(3)+2x^(2)))/(ln(cos(x^(3)+x))) is equal