Home
Class 12
MATHS
The maximum value of f(x)=x/(1+4x+x^2) i...

The maximum value of `f(x)=x/(1+4x+x^2)` is `-1/4` (b) `-1/3` (c) `1/6` (d) `1/6`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

the maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (i) -1/4 (ii)-1/3 (iii)1/6 (iv)1/b

The maximum value of f(x)=(x)/(4-x+x^(2)) on [-1,1] is (a) (1)/(4)(b)-(1)/(3)(c)(1)/(6)(d)(1)/(5)

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

Minimum value of ((1+x^(2))(1+x^(6)))/(x^(4)) is

The maximum value of the function f(x)=(x^(4)-x^(2))/(x^(6)+2x^(3)-1) where x>1 is equal to:

If X^2+4x+3=0 , then the value of (X^3)/(X^6+27x^3+27 is (A) -1 (B) -frac(1)(2) (C) 1 (D) 1/2

Let f(1)=-2 and f'(x)>=4.2 for 1<=x<=6 The smallest possible value of f(6) is 9(b)12 (c) 15 (d) 19

The maximum value of the function f(x)=((1+x)^(0.6))/(1+x^(06)) in the interval [0,1] is 2^(0.4)(b)2^(-0.4)1(d)2^(0.6)

If the function f(x)=x^(4)+bx^(2)+8x+1 has a horizontal tangent and a point of inflection for the same value of x then the value of b is equal to -1 (b) 1 (c) 6 (d) -6