Home
Class 12
MATHS
The maximum value of the function f(x)=s...

The maximum value of the function `f(x)=sin(x+pi/6)+cos(x+pi/6)` in the interval `(0,pi/2)` occurs at `pi/(12)` (b) `pi/6` (c) `pi/4` (d) `pi/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The gratest value of the function f(x)=(sinx)/(sin(x+pi/4)) on thhe interval [0,pi//2] is

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

Maximum value of sin (x + (pi)/(6)) + cos (x + (pi)/(6)) is

The maximum value of sin(theta+(pi)/(6))+cos(theta+(pi)/(6)) is attained at theta in(0,(pi)/(2))

sin pi/3 = 2sin pi/6 cos pi/6

The value of c in Lagranges theorem for the function f(x)=log sin x in the interval [(pi)/(6),(5 pi)/(6)] is (pi)/(4) (b) (pi)/(2)(2 pi)/(3) (d) none of these

Show that f(x)=sin x(1+cos x) is maximum at x=(pi)/(3) in the interval [0,pi]