Home
Class 8
MATHS
[" (i) "ab-bc,bc-ca,ca-ab],[" (iii) "2p^...

[" (i) "ab-bc,bc-ca,ca-ab],[" (iii) "2p^(2)q^(2)-3pq+4,5+7pq-3p^(2)q^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Add the following. (i) ab-bc, bc-ca,ca-ab (ii) a-b+ab,b-c+bc,c-a+ac (iii) 2p^2q^2-3pq+4,5+7pq-3p^2q^2 (iv) l^2+m^2,m^2+n^2,n^2+l^2,2lm+2mn+2nl

Add the following: 2p^2q^2-3pq+4 , 5+7pq-3p^2q^2

Add the following.(i) ab-b,bc-ca,ca-ab (ii) a-b+ab,b-c-a+bc,c-a+ac( ii) a-b+abq+4,5+7pq-3p^(2)q^(2)( iv) l^(2)+m^(2),m^(2)+n^(2),n^(2)+l^(2),2lm+2mn+2nl

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Add the following: 2p^2q^2 - 3pq + 4, 5+ 7 pq - 3p^2 q^2

Add the following: 2p^2q^2 – 3pq + 4, 5 + 7pq – 3p^2q^2

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).