Home
Class 12
MATHS
lim(x->0) (sin(nx)((a-n)nx – tanx))/x^2=...

`lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0`, when n is a non-zero positive integer, then a is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (sin(nx)((a-n) nx-tan x))/ x2., when n is a non-zero positive integer, then a is equal to

lim_(x to 0) ("sin" (nx)((a - n)nx - tanx))/(x^(2)) = 0 when n is a non-zero positive integer,then a equal to ________

lim_(x rarr 0) (sin nx[(a-n)nx - tan x])/(x^(2)) = 0 , where n is non-zero positive integer, tehn a is equal to :

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to

If lim_(x rarr 0)(((a-n)nx-tanx)sinnx)/x^2=0 , where n is non zero real number, then a is equal to:

If (lim_(x rarr0)({(a-n)nx-tan x}sin nx)/(x^(2))=0 where n is nonzero real number,the a is 0 (b) (n+1)/(n)( c) n(d)n+(1)/(n)

If lim_(x rarr0)(x^(n)*sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite,then n must be equal to 4(b)1(c)2(d)3

lim_(x to 0)({(2-n)nx - tan x}sin nx)/(x^(2))=0 , then the natural number n is

Derivative of f(x)=x^n is nx^(n-1) for any positive integer n.