Home
Class 12
MATHS
Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b...

Prove that: `|[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

det[[-2a^(ve),a+b,a+cb+a,-2b,b+cc+a,c+b,-2c]]=4(a+b)(b+c)(c+a)

Prove that |[a+b+c, -c, -b],[-c, a+b+c, -a],[-b, -a, a+b+c]|=2(a+b)(b+c)(c+a)

Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

Prove that |[a,b-c,c+b],[a+c,b,c-a],[a-b,a+b,c]|=(a+b+c)(a^2+b^2+c^2)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

-2a,a+b,a+c(a+b)(b+c)(c+a),b+a,-2b,b+cc+a,c+b,-2c]|=

Using properties of determinants, prove that |[a,b,c] , [a^2,b^2,c^2] , [b+c,c+a,a+b]|=(a+b+c)(a-b)(b-c)(c-a)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]= (a+b+c)^3

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)