Home
Class 11
MATHS
2sin^(2)theta+7cos^(2)theta=6...

2sin^(2)theta+7cos^(2)theta=6

Promotional Banner

Similar Questions

Explore conceptually related problems

3sin^(2)theta + 7cos^(2)theta=6

The value of the expression cos^(6)theta+sin^(6)theta+3sin^(2)theta cos^(2)theta=

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

Prove that: sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta