Home
Class 12
MATHS
Statement-1: int(0)^(sin^(2)x) sin^(-1...

Statement-1:
`int_(0)^(sin^(2)x) sin^(-1)sqrt(t dt)+int_(0)^(cos^(2)x) cos^(-1)sqrt(t dt)=(pi)/(4)` for all x.
Statement-2:`(d)/(dx) int_(theta(x))overset(psi(x)) f(t)dt=psi'(x)f(psi(x))-psi'(x)f(psi(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: int_(0)^(sin^(2)x) sin^(-1)sqrt(t )dt+int_(0)^(cos^(2)x) cos^(-1)sqrt(t )dt=(pi)/(4) for all x. Statement-2: (d)/(dx) int_(theta(x))overset(psi(x)) f(t)dt=psi'(x)f(psi(x))-theta'(x)f(theta(x))

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

(d)/(dx) int_(2)^(x^(2)) (t -1) dt is equal to

(d)/(dx)(int_(f(x))^(g(x))phi(t)dt) is equal to

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).