Home
Class 12
MATHS
If a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c ...

If `a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d ,a x2 3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f,` then prove that `|x_1y_1z_1x_2y_2z_2x_3y_3z_3|=(d-f){((d+2f))/(a b c)}^(1//2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

2x-3z + w = 1x-y + 2w = 1-3y + z + w = 1x + y + z = 1

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

Prove that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

2x+y-z=1 x-y+z=2 3x+y-2z=-1

x+y+z=1 x-2y+3z=2 5x-3y+z=3

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If ( x - 1 )^3 + ( y - 2 )^3 + ( z - 3 )^3 = 3 ( x - 1 ) ( y - 2 ) ( z - 3 ) and x - 1 != y -2 != z-3 , then x + y + z is equal to : ( A ) 2 ( B ) -6 ( C ) 6 ( D ) 4