Home
Class 12
MATHS
Let A=[(x+lambda,x,x), (x,x+lambda,x), (...

Let `A=[(x+lambda,x,x), (x,x+lambda,x), (x,x,x+lambda)]` then `A^(-1)` exists if
A. `x ne 0`
B. Adj. `A ne 0`
C. `|A| ne 0`
D. `A^(-1) = |A| Adj. A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

Let A=[[x+lambda,x,x] , [x,x+lambda,x] ,[x,x,x+lambda]] then A^(-1) exists if (A) x!=0 (B) lambda!=0 (C) 3x+1!=0 , lambda!=0 (D) x!=0 , lambda!=0

If |(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda)| = 0, (lambda != 0) then a) x = - lambda//3 b) x = 3 lambda c)x = 0 d)None of these

Let f(x) = [{:(5^(1//x),x lt 0),(lambda[x],x le 0","lambda in R):} , then at x = 0 :

Let f(x)={(5^(1//x)"," , x lt 0),(lambda[x]",",x ge0):} and lambda in R , then at x = 0

Let f(x)={(5^(1//x)"," , x lt 0),(lambda[x]",",x ge0):} and lambda in R , then at x = 0

(x^(2) +1)/x, x ne 0

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

If x*a=0, x*b=1, [x a b]=1 and a*b ne 0 , then find x in terms of a and b.