Home
Class 12
MATHS
Let inte^(x){f(x)-f'(x)}dx=phi(x). then...

Let `inte^(x){f(x)-f'(x)}dx=phi(x)`. then, `inte^(x)f(x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

Let inte^(x){f(x)-f'(x)}dx=phi(x) . Then inte^(x)*f(x)dx is a) phi(x)+e^(x)f(x) b) phi(x)-e^(x)f(x) c) 1/2{phi(x)+e^(x)f(x)} d) 1/2{phi(x)+e^(x)f'(x)}

Let int e^(x){f(x)-f'(x)}dx=varphi(x) .Then int e^(x)f(x)dx is varphi(x)=

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is

int e^x(f(x)+f'(x))dx is equal to :