Similar Questions
Explore conceptually related problems
Recommended Questions
- Let inte^(x){f(x)-f'(x)}dx=phi(x). then, inte^(x)f(x)dx is equal to
Text Solution
|
- int[f(x).phi'(x)-f'(x).phi(x)]/[f(x).phi(x)]{logphi(x)-logf(x)}.dx is ...
Text Solution
|
- Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is v...
Text Solution
|
- int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is
Text Solution
|
- If int f(x)dx=F(x),f(x) is a continuous function,then int(f(x))/(F(x))...
Text Solution
|
- if x=phi(t) and int f(x)dx=F(x) then int f(phi(t))phi'(t)dt=(A)phi(x)(...
Text Solution
|
- If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:
Text Solution
|
- Let inte^(x){f(x)-f'(x)}dx=phi(x). then, inte^(x)f(x)dx is equal to
Text Solution
|
- int({f(x)phi'(x)-f'(x)phi(x)})/(f(x)phi(x)){ ln phi(x)-lnf(x)}dx is eq...
Text Solution
|