Home
Class 12
MATHS
Prove that : cos (45^0 -A) cos (45^0 -B)...

Prove that : `cos (45^0 -A) cos (45^0 -B) - sin (45^0 -A) sin (45^0 -B) = sin (A+B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

cos (45 ^ (@) - A) cos (45 ^ (@) - B) -sin (45 ^ (@) - A) sin (45 ^ (@) - B) = sin (A + B)

Prove that: i) sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=sin2B ii) cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

Prove that: i) sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=sin2B ii) cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

Prove that sin A + cos A= sqrt2 cos (45^@-A)

Prove that : sin 105^@ + cos 105^@ = cos 45^@ .

Prove that: sin 105^@+cos 105^@=cos 45^@

Prove that sin105^@+cos105^@=cos45^@

cos (A + B) + sin (AB) = 2sin (45 ^ (0) + A) cos (45 ^ (@) + B)

Prove that: sin 105 ^(@) + cos 105 ^(@) = cos 45 ^(@)