Home
Class 12
MATHS
Let omega=-1/2+i(sqrt(3))/2. Then the va...

Let `omega=-1/2+i(sqrt(3))/2`. Then the value of the determinant `|(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)|` is (A) `3omega` (B) `3omega(omega-1)` (C) `3omega^2` (D) `3omega(1-omega)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega = - (1)/(2) + i (sqrt3)/(2) , then the value of the determinant |(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))| , is

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

(1-omega+omega^(2))(1+omega-omega^(2))=4

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

If omega is the complex cube root of unity,then prove that det[[1,1,11,-1-omega^(2),omega^(2)1,omega^(2),omega^(4)]]=+-3sqrt(3)i