Home
Class 12
MATHS
If g(x)=|a^(-x)e^(x loge a)x^2a^(-3x)e^(...

If `g(x)=|a^(-x)e^(x log_e a)x^2a^(-3x)e^(3x log_e a)x^4a^(-5x)e^(5x log_e a)1|` , then graphs of `g(x)` is symmetrical about the origin graph of `g(x)` is symmetrical about the y-axis `((d^4g(x))/(dx^4)|)_(x=0)=0` `f(x)=g(x)xxlog((a-x)/(a+x))` is an odd function

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|{:(2^(-x),e^(x log_(e)2),x^(2)),(2^(-3x),e^(3x log_(e)2),x^(4)),(2^(-5x),e^(5x log_(e)2),1):}| then show that f(x) is symmetric about origin

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

If g(x)=|[a^(-x), e^(xlog_e a), x^2] , [a^(-3x), e^(3xlog_e a), x^4] , [a^(-5x), e^(5xlog_e a), 1]| then 1)g(x)+g(-x)=0 2)g(x)-g(-x)=0 3)g(x).g(-x)=0 4)None of these

If f(x)=e^(x) and g(x)=log_(e)x, then (gof)'(x) is

If f(x)=In[((100+x)e^(x^(3)))/(100-x)], then the graph of f^(-1)(x) will be symmetrical about

int(e^(6log x)-e^(5log x))/(e^(5log x)-e^(3log x))dx

If f(x)=e^(x),g(x)=log e^(x) then find fog and gof

If g(x)=int0xx^(x)log_(e)(ex)dx , then g'(pi) equals

f(x)=log_(e)x, g(x)=1/(log_(x)e) . Identical function or not?

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}