Home
Class 12
MATHS
Statement 1: The value of [("lim")(nveco...

Statement 1: The value of `[("lim")_(nvecoo)(sinxtanx)/(x^2)]` is 1, where [.] denotes the greatest integer function. Statement 2: For `(0,pi/2),sinx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(x->oo)[x^2/(sinxtanx)],where [.] denotes greatest integer function.

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :