Home
Class 12
PHYSICS
A positive charge particle to charge q& ...

A positive charge particle to charge `q&` mass `m` is released at origin.There are unifrom magnetic and electric field in the space given by `vecE=E_(0)hatj & vecB = B_(0)hatk`, where `E_(0) & B_(0)` are constants.Find the `y` coordinate of the particle at time `t`.

Text Solution

Verified by Experts

The correct Answer is:
`y=(E_(0)m)/(qB_(0)^(2))[1-cos (qB_(0))/mt]`

`m(dv)/(dt)=qE_(0) hatj[v_(x)hati+v_(y)hatj]B_(0)hatk`
`m(dv)_(y)/(dt)hatj+m(dv)_(x)/(dt)hati=[qE_(0)-qv_(x)B_(0)] hatj+qv_(y)B_(0)hati`
`m(dv)_(y)/(dt)=[qE_(0)-qv_(x)B_(0)] -(1)`
`m(dv)_(y)/(dt)=qv_(x)B_(0)` --(2)
From (1)`V_(x)=[qE_(0)-m"dv"_(y)/(dt)]1/(qE_(0))`
From (2) `m/(qE_(0)) d/(dt)[qE_(0)-m"dv"_(y)/(dt)]=qv_(y)B_(0)`
`-(d^(2)v_(y))/"dt"^(2)=(q^(2)v_(y)B_(0)^(2))/m^(2) or (d^(2)v_(y))/"dt"^(2)+(q^(2)v_(y)B_(0)^(2))/m^(2)=0`
Solution of above equation:
`v_(y)=A sin (omega t +phi)`-(3)
where `omega=(q B_(0))/m` at `t=0,v_(y)=0,phi=0 , v_(y)=A sin omega t`
at `t=0,a=(q B_(0))/m a="dv"_(y)/(dt)=A omega cos omega t (qE_(0))/m=Axx(qB_(0))/m rArr A =E_(0)/B_(0)`
This equation (3) `v_(y)=E_(0)/B_(0)sin omega t(dy)/(dt) =E_(0)/B_(0)sin omega t rArr y=[-E_(0)/B_(0)cos omega t]_(0)^(t)`
`y=(E_(0)m)/(B_(0)xxq B_(0))[1-cos omegat] rArr y=(E_(0)m)/(B_(0)^(2))[1-"cos" (q B_(0))/mt]`
Promotional Banner

Topper's Solved these Questions

  • ELECTRODYNAMICS

    RESONANCE|Exercise Exercise-3 PART-3|29 Videos
  • ELECTRO MAGNETIC WAVES

    RESONANCE|Exercise Exercise 3|27 Videos
  • ELECTROMAGNETIC INDUCTION

    RESONANCE|Exercise A.l.P|19 Videos

Similar Questions

Explore conceptually related problems

A particle having mass m and charge q is released from the origin in a region in which electric field and megnetic field are given by vec(B) = -B_(0)hat(j) and vec(E) = vec(E)_(0)hat(k) . Find the speed of the particle as a function of its z -coordinate.

A particle having mass m and charge q is released from the origin in a region in which electric field and magnetic field are ginen by B=+B_(0)hatj and vecE=+E_(0)hati . Find the speed of the particle as a function of its X -coordinate.

A particle of charge q and mass m released from origin with velocity vec(v) = v_(0) hat(i) into a region of uniform electric and magnetic fields parallel to y-axis. i.e., vec(E) = E_(0) hat(j) and vec(B) = B_(0) hat(j) . Find out the position of the particle as a functions of time Strategy : Here vec(E) || vec(B) The electric field accelerates the particle in y-direction i.e., component of velocity goes on increasing with acceleration a_(y) = (F_(y))/(m) = (F_(e))/(m) = (qE_(0))/(m) The magnetic field rotates the particle in a circle in x-z plane (perpendicular to magnetic field) The resultant path of the particle is a helix with increasing pitch. Velocity of the particle at time t would be vec(v) (t) = v_(x) hat(i) + v_(y) hat(j) + v_(z) hat(k)

A particle having mass m and charge q is released from the origin in a region in which electric field and magnetic field are given by vecB =- B_0vecJ and vecE - E_0 vecK. Find the speed of the particle as a function of its z-coordinate.

A particle of mass m and charge q is lying at the origin in a uniform magnetic field B directed along x-axis. At time t = 0, it is given a velocity v_0 , at an angle theta with the y-axis in the xy-plane. Find the coordinates of the particle after one revolution.

A charged particle of specific charge (Charge/mass) alpha is released from origin at time t=0 with a velocity given as vecv=v_(0)(hati+hatj) The magnetic field in region is uniform with magnetic induction vecB=B_(0)hati . Coordinates of the particle at time t=(pi)/(B_(0)alpha) are:

A particle having mass m and charge q is released from the origin in a region in which ele field and magnetic field are given by B=-B_0hatj and E=E_0hatk . Find the y- component of the velocity and the speed of the particle as a function of it z-coordinate.

A particle of charge q, mass starts moving from origin under the action of an electric field vecE=E_(0)hati and magnetic field vecB=B_(0)hatk . Its velocity at (x,0,0) is v_(0)(6hati+8hatj) . The value of is

A charge particle is moving along positive y-axis in uniform electric and magnetic fields E=E_0hatk and B=B_0hati Here E_0 and B_0 are positive constants.choose the correct options.

The electric field acts positive x -axis. A charged particle of charge q and mass m is released from origin and moves with velocity vec(v)=v_(0)hatj under the action of electric field and magnetic field, vec(B)=B_(0)hati . The velocity of particle becomes 2v_(0) after time (sqrt(3)mv_(0))/(sqrt(2)qE_(0)) . find the electric field:

RESONANCE-ELECTRODYNAMICS-Advanced level problems
  1. A thin beam of charged particles in incident normally on the boundry o...

    Text Solution

    |

  2. An electron moving with velocity vecv(1)=1hati m//s at a point in a ma...

    Text Solution

    |

  3. An electron is shot into one end of a solenoid.As it enters the unifor...

    Text Solution

    |

  4. At time t(1), an electron is sent along the positive direction of x-ax...

    Text Solution

    |

  5. In the figure shown an infinitely long wire carries a current I(1) and...

    Text Solution

    |

  6. A loop PQR formed by three identical uniform conducting rods each of l...

    Text Solution

    |

  7. In order to impatt an angular velocity to an earth satellite the geoma...

    Text Solution

    |

  8. The given fig.shows a coil bent with AB=BC=CD=DE=EF=FG=GH=HA=1 m and c...

    Text Solution

    |

  9. A charged particle +q of mass m is placed at a distance d from another...

    Text Solution

    |

  10. A triangular loop (ABC) having current i(2) and an infinite wire havin...

    Text Solution

    |

  11. A finite conductor AB carrying current i is placed near a fixed very l...

    Text Solution

    |

  12. A particle of mass m and charge q is moving in a region where uniform,...

    Text Solution

    |

  13. The region between x=o and x = L is filled with uniform, steady magn...

    Text Solution

    |

  14. A circular loop of radius R is bent along a diameter and given a shap...

    Text Solution

    |

  15. A current of 10 A flows around a closed path in a circuit which is in ...

    Text Solution

    |

  16. A rectangular loop PQRS made from a uniform wire has length a, width b...

    Text Solution

    |

  17. A ring of mass m and radius r is rotated in uniform magnetic field B w...

    Text Solution

    |

  18. A positive charge particle to charge q& mass m is released at origin....

    Text Solution

    |

  19. A square loop of wire of edge a carries a current i. Magnetic induct...

    Text Solution

    |

  20. A positive point charge q of mass m, kept at a distance x(0)(in the sa...

    Text Solution

    |