Home
Class 12
MATHS
The value of |2x1y1x1y2+x2y1x1y3+x3y1x1y...

The value of `|2x_1y_1x_1y_2+x_2y_1x_1y_3+x_3y_1x_1y_2+x_2y_1 2x_2y_2x_2y_3+x_3y_2x_1y_3+x_3y_1x_2y_3+x_3y_2 2x_3y_3|` is.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

|(2x_1y_1, x_1y_2+x_2y_1, x_1y_3+x_3y_1),(x_1y_2+x_2y_1, 2x_2y_2, x_2y_3+x_3y_2),(x_1y_3+x_3y_1, x_2y_3+x_3y_2, 2x_3y_3)|= (A) 0 (B) 1 (C) -1 (D) none of these

A triangle has vertices A_i(x_i , y_i)fori=1,2,3 If the orthocentre of triangle is (0,0), then prove that |x_2-x_3y_2-y_3y_1(y_2-y_3)+x_1(x_2-x_3)x_3-x_1y_2-y_3y_2(y_3-y_1)+x_1(x_3-x_1)x_1-x_2y_2-y_3y_3(y_1-y_2)+x_1(x_1-x_2)|=0

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

3x+2y=8 2x-3y=1

Theorem : The area of a triangle the coordinates of whose vertices are (x_1;y_1);(x_2;y_2)and (x_3;y_3) is 1/2|(x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|

If the circle x^2 + y^2 = a^2 intersects the hyperbola xy=c^2 in four points P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3), S(x_4, y_4) , then : (A) x_1 + x_2 + x_3 + x_4 = 0 (B) y_1 + y_2 + y_3 + y_4 = 0 (C) x_1 x_2 x_3 x_4= c^4 (D) y_1 y_2 y_3 y_4 = c^4

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

If the co-ordinates of the vertices of an equilateral triangle with sides of length a are (x_1,y_1), (x_2, y_2), (x_3, y_3), then |[x_1,y_1,1],[x_2,y_2,1],[x_3,y_3,1]|=(3a^4)/4