Home
Class 12
MATHS
f(x)=x^(4)-8x^(3)+22x^(2)-24x+21...

f(x)=x^(4)-8x^(3)+22x^(2)-24x+21

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(4)-8x^(3)+22x^(2)-24x+20 has minimum value at x =

Examine for maxima and minima of the function f(x)=x^(4)-8x^(3)+22x^(2)-24x+8 .

Using the first derivative , find the extreme of the following functions : f(x) =x^(4)-8x^(3)+22x^(2)-24x +12,

For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x , the sum of all local extreme value of f(x) is equal to

For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x , the sum of all local extreme value of f(x) is equal to

Let f:R rarrR, f(x)=x^(4)-8x^(3)+22x^(2)-24x+c . If sum of all extremum value of f(x) is 1, then c is equal to

Let f:R rarrR, f(x)=x^(4)-8x^(3)+22x^(2)-24x+c . If sum of all extremum value of f(x) is 1, then c is equal to

Find the image of the following sets under the mapping f(x)=x^(4)-8x^(3)+22x^(2)-24x+10(i)(-oo,1)

The set of values of x for which f(x)=3x^(4)-8x^(3)-6x^(2)+24x-12 is an increasing function is