Home
Class 12
MATHS
int(x^(2)tan^(-1)x^(3))/(1+x^(6))dx" is ...

int(x^(2)tan^(-1)x^(3))/(1+x^(6))dx" is equals to "

Promotional Banner

Similar Questions

Explore conceptually related problems

int(6x^(2)tan^(-1)(x^(3)))/(1+x^(6))dx=

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int(x^(3)-x)/(1+x^(6))dx is equal to

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

Evaluate the following int(x^(2)tan^(-1)x^(3))/(1+x^(6))dx

The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to

int(x^3-x)/(1+x^6)dx is equal to

int(x^3-x)/(1+x^6)dx is equal to

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

int x^(3)(tan^(-1)x)dx