Home
Class 12
MATHS
The values of parameter a for which the ...

The values of parameter `a` for which the point of minimum of the function `f(x)=1+a^2x-x^3` satisfies the inequality `(x^2+x+2)/(x^2+5x+6)<0a r e` `(2sqrt(3),3sqrt(3))` (b) `-3sqrt(3),-2sqrt(3))` `(-2sqrt(3),3sqrt(3))` (d) `(-2sqrt(2),2sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

The function f(x)=2x^3-3x^2-12x+5 has a minimum at x=

Find the domain of the function , f(x)=(x^2 +2x +3)/(x^2 -5x +6)

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

Find the number of integral values of x satisfying the inequality, x^2-5x-6<0 .

Find the values of the parameter a such that the rots alpha,beta of the equation 2x^(2)+6x+a=0 satisfy the inequality alpha/ beta+beta/ alpha<2

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20

Number of intergal values of x satisfying the inequality (x^2+6x-7)/(|x+2||x+3|) lt 0 is