Home
Class 9
MATHS
Prove that: (sqrt(3\ xx\ 5^(-3))\ -:r...

Prove that: `(sqrt(3\ xx\ 5^(-3))\ -:root(3)(3^(-1))\ sqrt(5))\ xx\ (3\ xx\ 5^6)^(1/6)\ =3/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

root(3)(2)times sqrt(5)

Prove that: (sqrt(3x5^(-3))-:3^(-1)3sqrt(5))x3x5^(6)6=(3)/(5)

sqrt(3xx5^(-3))-:(3^(-1))^((1)/(3))sqrt(5)*(3xx5^(6))^((1)/(6))=(3)/(5)

Prove that: (3^(-3)\ xx\ 6^2xx\ sqrt(98))/(5^2\ xx\ root(3)(1/(25))\ xx\ (15)^(-4/3)\ xx\ 3^(1/3))=28sqrt(2)

root(3)(4) times root(6)(5)

Prove that: (2^(1/2)\ xx\ 3^(1/3)\ xx\ 4^(1/4))/(10^(-1/5)\ xx\ 5^(3/5))\ -:(3^(4/3)\ xx\ 5^(-7/5))/(4^(-3/5)\ xx\ 6)=10

Evaluate : sqrt((0.5)^(3) xx 6 xx 3^(5))

(3+sqrt5)^2 xx (3-sqrt5)^2 = ?

((sqrt(5)-3))/((sqrt(5)-3))times((sqrt(5)-3))/((sqrt(5)+3))