Home
Class 12
MATHS
The value of [(veca -2vecb-vecc)(veca-ve...

The value of `[(veca -2vecb-vecc)(veca-vecb)( veca-vecb-vecc)]` is equal to the box product-

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

The scalar triple product [(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-vecb)] is equal to

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then