Home
Class 12
MATHS
" If "y=x^(x)" ,prove that "(d^(2)y)/(dx...

" If "y=x^(x)" ,prove that "(d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x) , then prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

if y=x^(x), then prove (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x prove that (d^2y)/(dx^2)-1/(y)(dy/dx)^2-y/x=0

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=a+(b)/(x) ; prove that x(d^(2)y)/(dx^(2))+2(dy)/(dx)=0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,