Home
Class 14
MATHS
|[1!,2!,3!],[2!,3!,4!],[3!,4!,5!]|...

|[1!,2!,3!],[2!,3!,4!],[3!,4!,5!]|

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that abs[[1!,2!,3!],[2!,3!,4!],[3!,4!,5!]]=4!

Prove that : {:|(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)]= 4!

3.If A= [[1,2,3],[2,3,4],[3,4,5]] , then 2A'-A=_ (A) [[1,2,3],[2,3,6],[3,3,7]] (B) [[-1,0,3],[4,5,6],[7,-8,1]] (C) [[1,5,3],[-2,4,0],[5,7,8]] (D)None of these

Find the rank of the matrix A=[(1,2,3),(2,3,4),(3,4,5)] .

If A={1,2,3},B={2,3,4},C={3,4,5,6}, then prove that A-(B-C)={1,3}

A = {1, 2, 3}, B= {2, 3, 4}, C= {3, 4, 5} and U = {1,2, 3, 4, 5,6}. Verify the identities: Acup(BcapC)=(AcupB)cap(AcupC)

A = {1, 2, 3}, B= {2, 3, 4}, C= {3, 4, 5} and U= {1,2, 3, 4, 5,6}. Verify the identities: (AcupB)^c=A^c capB^c

Compute the indicated products. i) [[a , b],[ -b , a]] [[a, -b],[ b, a]] ii) [[1], [ 2], [3]][[2, 3 ,4]] iii) [[1, (-2)],[ 2 ,3]] [[1 , 2 ,3],[ 2, 3 , 1]] iv) [[2 , 3 , 4 ],[ 3 , 4 , 5 ],[ 4, 5 ,6]] [[1 , -3, 5],[ 0, 2, 4],[ 3, 0, 5]] v) [[2 , 1],[ 3 , 2],[ (-1), 1]] [[1, 0 , 1],[ (-1), 2, 1]] vi) [[3, (-1), 3],[ (-1), 0, 2]][[2, -3],[ 1 , 0],[ 3, 1]]