Home
Class 12
MATHS
The volume of he parallelepiped whose...

The volume of he parallelepiped whose sides are given by ` vec O A=2i-2, j , vec O B=i+j-ka n d vec O C=3i-k` is a.`4/13` b. `4` c. `2/7` d. `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The volume of he parallelepiped whose sides are given by vec O A=2i-2j , vec O B=i+j-k a n d vec O C=3i-k is a. 4/13 b. 4 c. 2/7 d. 2

The volume of he parallelepiped whose sides are given by vec O A=2i-2j , vec O B=i+j-k a n d vec O C=3i-k is a. 4/13 b. 4 c. 2/7 d. 2

The volume of a parallelopiped whose adjacent sides are vec a = i+2j, vec b = j+2k , and vec c = 2i-k is

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i+3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j+2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i-3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j-2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i+3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j+2 hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i-3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j-2 hat k .

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .