Home
Class 12
MATHS
If f(x)=x^3+4x^2+lambdax+1 is a monotoni...

If `f(x)=x^3+4x^2+lambdax+1` is a monotonically decreasing function of `x` in the largest possible interval `(-2,-2/3)dot` Then (a ) `lambda=4` (b) `lambda=2` (c) `lambda=-1` (d) `lambda` has no real value

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3+4x^2+ax+5 is a monotonically decreasing function of x in the largest possible interval (-2,-2//3), then the value of a is

If f(x)=2x^3+9x^2+lambdax+20 is a decreasing function fo x in the largest possible interval (-2,-1) then lambda =

Function f(x)=cos x-2 lambda x is monotonic decreasing when (a) lambda>1/2(b)lambda 2

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If (tan3A)/(tan A)=lambda then a possible value of (sin3A)/(sin A) is (A) (8)/(3) if lambda=3 (B) 1 if lambda=-1 (C) (1)/(5) if lambda=(-1)/(9) (D) 4 if lambda=2

If the equation x^(3)-6x^(2)+9x+lambda=0 has exactly one root in (1, 3), then lambda belongs to the interval

The values of lambda for which the function f(x)=lambda x^(3)-2 lambda x^(2)+(lambda+1)x+3 lambda is increasing through out number line (a) lambda in(-3,3)( b) lambda in(-3,0)( c )lambda in(0,3) (d) lambda in(1,3)

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

Of f(x)=(2)/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^(2)+x+1)(lambda^(2)-5 lambda+3)x+10 is a decreasing function for all x in R, find the permissible values of lambda.