Home
Class 12
MATHS
The greatest value of f(x)=cos(x e^([x])...

The greatest value of `f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo],` is (where [.] represents the greatest integer function). `-1` (b) 1 (c) 0 (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of f(x)=cos(xe^([x])+7x^(2)3x),xe in[-1,00) is

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

If a>0lim_(x rarr oo)([ax+b])/(x) is where [.] represents the Greatest integer function

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [] represents the greatest integer function).

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist